
Most business decision-makers aren’t trained to understand data outliers, but they can learn the basics. Executives, managers, and employees without math degrees can ask smarter questions about analyses they’re basing crucial judgments on. Here are some things to know.
Data analytics has its own vocabulary that business decision-makers are under pressure to learn. Beware, though, because technical terms are often used loosely, sometimes to the detriment of individuals and their companies. An outlier is a good example. A lot of people are talking about outliers, but not a lot of people understand why they exist, what causes them, and what should be done with them, if anything.
“An outlier is a member of a defined dataset which has a dramatically different value than the other members of the set. It can be the result of measurement or recording errors, or the unintended and truthful outcome resulting from the set’s definition,” said Tom Bodenberg, chief economist and data consultant at market research firm Unity Marketing in an interview.
Outliers make their way into reported statistics every day. Sometimes their inclusion or exclusion is obvious, and sometimes it isn’t. For example, in 1984 the University of Virginia reported that the average starting salary of Rhetoric and Communications graduates was $55,000. However, an outlier was skewing the analysis. The dataset included one hundred graduates with $25,000 salaries and NBA first draft pick Ralph Sampson, another graduate. His starting salary exceeded $1 million.
Outliers can pop up for different reasons. Some are caused by mistakes made by humans or machines. Others represent actual data. Most business professionals haven’t considered the difference, and they have no idea what to do with them.
One tactic is to include outliers in a dataset or exclude outliers from a dataset as a matter a course, without considering the potential consequences. While it’s true that the inclusion or removal of outliers may have little or no effect on an analysis, the opposite may be true.
Learn to integrate the cloud into legacy systems and new initiatives. Attend the Cloud Connect Track at Interop Las Vegas, May 2-6. Register now!
“If you’re working with data, or other people are giving you results based on data, it’s useful to consider how outliers are detected and handled, and what you can learn from them,” said Spencer Greenberg, mathematician and founder of decision-making tool provider ClearerThinking.org, in an interview. “Important questions to ask are, ‘Were there outliers in the data? Why did they occur? What can we learn from them?’ And ‘How were they dealt with?'”
Some organizations analyze outliers to detect such things as fraudulent transactions, criminal activity, security breaches, and disease outbreaks. In fact, outliers can sometimes tell interesting stories that might not otherwise have been considered.
“Anyone who is trying to interpret data needs to care about outliers. It doesn’t matter if the data is financial data, sociological data, medical data, or even qualitative data like a relationship. Any analysis of data or information must consider the presence and effect of outliers,” said Sham Mustafa, founder and CEO of data scientist marketplace Correlation One, in an interview.
Some outliers are easy to spot. Others are more difficult. Here are a few things to consider.
This article was originally published on www.informationweek.com and can be viewed in full


Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)