By Swami Sivasubramanian, Vice President, Amazon Machine Learning, AWS
When Switzerland decided to slash congestion and pollution by removing tens of thousands of cargo trucks from its Alpine highways, it built the Gotthard Tunnel, the longest and deepest rail tunnel in the world. This feat of modern engineering is a boon to civilian and commercial entities alike, but such impressive construction projects aren’t the only way we can improve the future of transportation and logistics.
Instead, in an increasingly competitive and connected world where just 29 percent of transportation and logistics (T&L) CEOs are confident their company’s revenues will grow in the next year, more and more T&L companies are turning to new, cloud-based machine learning services that can help them become more efficient and drive a better experience for their customers.
This convergence of the cloud and AI is enabling widespread innovation in autonomous technology, especially in mobility. That’s game-changing, as 68 per cent of heads of T&L companies believe that changes in core technologies of service provision will disrupt their industry in the next five years, according to PWC, while 65 per cent anticipate progress in distribution channels will do the same.
All told, there are four main areas where machine learning is powering a mobility revolution for the transportations and logistics industry: predicting demand and route optimisation; autonomous driving and mapping; robotics; and anomaly detection.
For example, Convoy, which is disrupting the $800 billion trucking industry, optimises its routes by leveraging machine learning models. Trucking in the United States is a fragmented network of shippers and hauliers working through human brokers–an inefficient system resulting in 40 per cent of the 95 billion miles American truck drivers cover each year being driven empty. Convoy is able to analyse millions of shipping jobs to create the industry’s most efficient matches–increasing profits by reducing empty miles, and, crucially, cutting emissions.
But the trucking industry is experiencing a national shortage of at least 100,000 drivers. One solution? Self-driving trucks. At TuSimple, the technology team deployed more than 100 cloud-based AI modules to safely and efficiently make autonomous commercial deliveries of more than 100 miles. Even at 65 miles an hour on a loaded truck, TuSimple’s advanced AI algorithm can distinguish between types of vehicles sharing the road, and determine their speed, and keep TuSimple’s trucks safely centred in their lanes with an accuracy of +/- 5 centimetres.
In Southeast Asia, the ride-hailing company Grab wanted to boost its real-time on-demand matching and supply algorithms. It turned to machine learning tools to access to real-time data computation and data streams that support 1.5 million ride bookings, ultimately improving its matching and supply performance by 30 per cent.
Another example of AI and machine learning positively impacting the T&L industry is Lyft’s use of an AI-powered time series analytics solution. That technology automatically surfaces anomalies that signal larger business problems, and detects incidents requiring inspection. Lyft has seen huge cost savings by not having to invest in large in-house data science or manually inspect dashboards.
Accuracy of predictions, of course, is a major factor for T&L companies, and at UAE-based Aramex–which provides international and domestic express delivery, freight forwarding and online shopping services–its live transit operations handles thousands of requests every minute. By deploying a fully-managed, cloud-based service that enables its developers and data scientists to train, build and deploy AI and ML models, Aramax saw a 74 per cent increase in accuracy of transit time predictions, driving down delivery-related service calls by 40 per cent.
Cloud-based machine learning and AI tools are also at the very heart of Amazon.com, successfully and efficiently delivering billions of packages a year–from the moment customers place an order to fulfilment and then to delivery. We use forecasting algorithms to predict what customers might order to ensure we have enough supply in our warehouses. Our AI and machine learning services on AWS also power our fulfilment centre robots, the methods for working with our delivery partners, and even to optimise our delivery routes.
The lessons of the last few years are clear: Being competitive in the T&L industry has never been more complex, and profitability comes only with true technology-driven efficiency. Fortunately, new innovations in AI and ML are providing these businesses a huge advantage by giving them the advanced tools they need to solve their biggest problems and thrive.
Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)