This article was originally published by techrepublic.com and can be viewed in full here
This article discussed the value of learning from analytics project failures
A major industrial products company made a huge predictive analytics commitment to preventive maintenance to identify and fix key components before the components failed so the firm’s limited technical services talent could be optimized. Halfway through it was observed that many of the subsystems could be instrumented and remotely monitored in real time as part of a networked system. The insight changed the direction of the entire project.
It was observed that “The value emphasis shifted from preventive maintenance to efficiency management with key customers. The predictive focus initially blurred the larger vision of where the real value could be.”
Many corporate analytics efforts are like this. Companies begin by asking questions, and those questions in turn direct them into certain directions, but sometimes that’s at the expense of other directions that might have yielded greater results.
It is this fear of getting on the wrong track of data analysis that has corporate data scientists and analysts moving carefully and issuing numerous disclaimers about what results might yield along the way. This is also why many of these corporate practitioners look to outside business partners and consultants for help with their analytics.
Businesses are more committed to implementing big data analytics than ever before, but many are still struggling with how to maximize the benefit. Survey results underpin how investing in analytics is just the first step. It’s organizations that go the next level by removing complexities from the analytics process and empowering others in the organization, namely business analysts, that are going be able to turn data insights into actionable business enhancements for long-term success.
The good news is that more and more companies are providing ways to abstract the complexities out of big data and analytics with semantic and reporting tools that sit on top of “raw” processing engines like Hadoop and enable end users and data analysts to easily access and manipulate information to gain business results. This effort is further amplified and expedited when expert partner-implementers are called into the process.
Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)