
NOTE FROM BIG COMMUNITY SENIOR JOURNALIST
Here’s one to really get your brain chugging. Especially mouth-watering info for data scientists and a chance to really geek out on latest offerings from IBM.
The IBM Cloud Bluemix platform has been upgraded through IBM’s 300 million investment in data analytics. The initiative which comes in the form of their Data Science Experiment, will provide 250 curated data sets, open source tools and a collaborative workspace that will help data scientists discover and give meaningful insights to developers.
More interesting reads for the data scientist or enthusiast on case studies IBM is already working on built on Apache Spark, and how IBM, NASA and SETI Institute are collaborating to analyse six terabytes of deep space data in the hunt for extraterrestrial life.
On Tuesday, IBM announced the first cloud-based development environment for near real-time, high performance analytics, giving data scientists the ability to access and ingest data and deliver insight-driven models to developers.
Available on the IBM Cloud Bluemix platform, the Data Science Experience provides 250 curated data sets, open source tools and a collaborative workspace to help data scientists uncover and share meaningful insights with developers.
Building on its $300 million investment in developing Apache Spark as a type of “analytics operating system,” IBM created the Data Science Experience to extend the speed and agility of Spark to more than two million members of the R community through new contributions to SparkR, SparkSQL and Apache SparkML. As a result, data scientists who work in R should have faster access to more data, and in turn, more insights delivered from the IBM Cloud.
The Data Science Experience’s open environment allows data scientists to accelerate and simplify data ingestion, curation and analysis by bringing together the content, data, models and open source resources from IBM and others including H2O, RStudio, Jupyter Notebooks on Apache Spark in a single security-rich managed environment.
“With Apache Spark, we see an opportunity to significantly transform the role of the data scientist by providing access to curated data sets, open source tools and a collaborative platform to accelerate innovation,” said Bob Picciano, Senior Vice President, IBM Analytics.
Case studies
IBM is already working with organizations to use data science applications built on Apache Spark. For example, using IBM Spark, IBM Bluemix and mobile technologies, the Bernhardt Furniture IT team designed a virtual showroom app for iPad devices that gives the sales team immediate access to the latest product information. Real-time analysis of traffic patterns and product trends allows Bernhardt to now make rapid adjustments to product placement, pricing and availability status.
IBM, NASA and the SETI Institute are working together to analyze more than six terabytes of complex deep space radio signals to hunt for patterns that might identify the presence of intelligent extraterrestrial life. With IBM Analytics on Apache Spark, SETI has embarked on a new Stellar Pair Eavesdropping campaign which enables the organization to look for potential communications between planets that might be orbiting in double star systems.
Contributions
IBM continues to collaborate with data science organizations including Galvanize, H2O.ai, LightBend and RStudio to promote an integrated and unified data science ecosystem. Additionally, IBM is joining the R Consortium to help accelerate data science’s readiness for the enterprise.
In the growing analytics ecosystem, IBM has contributed to related projects including Apache Toree, EclairJS, Apache Quarks, Apache Mesos, Apache Tachyon now called Alluxio, and major contributions to Apache Spark sub-projects SparkSQL, SparkR, MLLib and PySpark.
In addition, Spark is built into the core of IBM platforms, including Watson, Commerce, Analytics, Systems, Cloud. IBM also open-sourced its breakthrough SystemML machine learning technology to advance Spark’s machine learning capabilities in 2015.
“With Data Science, the major roadblock is having access to large data sets and having the ability to work with so much data. With [Tuesday’s] announcement, clients can have both,” said Picciano.
This article was originally published on www.icrunchdatanews.com and can be viewed in full


Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)