
Enterprises of all sizes are facing challenges on a range of data performance management issues from stopping bad data to keeping their data flows operating effectively.
This is a finding of a survey by data performance management specialist StreamSets which finds that nearly 90 percent of respondents reported flowing bad data into their data stores, while only 12 percent think themselves good at the key aspects of data flow performance management.
Data quality is cited as the most common challenge when managing big data flows (selected by 68 percent). In addition to bad data flowing into stores, 74 percent of organizations report currently having bad data in their stores, despite cleansing data throughout its lifecycle. While 69 percent of organizations consider the ability to detect diverging data values in flow as ‘valuable’ or ‘very valuable,’ only 34 percent rated themselves as ‘good’ or ‘excellent’ at detecting those changes.
Areas where respondents felt weakest are performance degradation (44 percent), error rate increases (44 percent) and detecting divergent data (34 percent). The only measure where a majority (66 percent) felt confident about their capabilities was detecting a ‘pipeline down’ event. What’s common across all performance indicators though is the gap between the respondents’ self-reported capabilities and how valuable they considered each competency.
The survey also identifies problems caused by data drift — unexpected changes in data structure or semantics — 85 percent say this has a substantial impact, and 53 percent report that they have to alter each data flow pipeline several times a month, with 23 percent making changes several times a week or more.
What’s also interesting is the continued prevalence of hand coding, with 77 percent using it to design their data pipelines. Two-thirds also use legacy ETL (Extract, Transform and Load) and data integration tools.
“In today’s world of real-time analytics, data flows are the lifeblood of an enterprise,” says Girish Pancha, CEO of StreamSets. “The industry has long been solely fixated on managing data at rest and this myopia creates a real risk for enterprises as they attempt to harness big and fast data. It is imperative that we shift our mindset towards building continuous data operations capabilities that are in tune with the time-sensitive, dynamic nature of today’s data”.
This article was originally published on www.betanews.com and can be viewed in full


Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)