Keysight Technologies, Inc. has released a new Universal Signal Processing Architecture (USPA) prototyping platform. It enables semiconductor companies to conduct complete chip prototyping and verification, pre-tapeout, in a real-time development environment integrating digital twins of fully compliant, standards-based signals.
The final step of the chip design process, known as the silicon tapeout, is an increasingly expensive procedure that leaves little room for design failure. If a design fails following the tapeout, chip makers must start over again with a new “re-spin” that can take 12 months or longer to complete. In addition to tying up valuable research and development resources, these chip redesigns can potentially cause the chip maker to miss a narrow time-to-market window.
To reduce the risks of design failures and expensive re-spins, the Keysight USPA platform provides chip designers and engineers with complete digital twin signalling to verify designs before they are committed to silicon. The USPA platform offers designers an alternative to proprietary custom prototyping systems by integrating ultrafast signal converters with a high-performance, completely modular field-programmable gate array (FPGA) prototyping system.
Benefits of Keysight’s Prototyping Platform
The unique USPA prototyping platform offers the following benefits:
- Supports the highest performance optoelectronic development projects with digital-to-analogue converter (DAC) and analog-to-digital converter (ADC) interfaces that emulate signals at full speed, up to 68 GS/s (ADC) and 72 GS/s (DAC).
- Provides a broad range of input / output interfaces that are suitable for applications including 6G wireless development, digital radio frequency memory, advanced physics research and high-speed data acquisition applications, such as radar and radio astronomy.
- Offers flexibility with two configurations, including a preconfigured system for single channel transceiver applications and a fully configurable set of modular components that can be combined to support a wide range of single and multi-channel applications. In addition, the pre-configured system can be expanded with additional components that leverage the modularity, scalability and cost-effective reusability of the platform architecture.
Hong Jiang, CEO at Avance Semi, Inc., said: “When we began work on our first ASIC for the coherent fiber communication market, we understood that we might only have one chance to get it right and that a second tapeout would be both prohibitively expensive and so time- consuming that we could miss our narrow time-to-market window. With Keysight’s USPA platform and our system integration effort, we can optimise and verify our design in real-time as it progresses. This is like a “free soft tapeout” we can run as many times as needed. This approach saves development time and money while dramatically increasing confidence in our design and product release timeline.”
Dr Joachim Peerlings, Vice President and General Manager at Keysight’s Network and Center Solutions Group, said: “By accelerating and de-risking chip development, Keysight USPA delivers a new end-to-end solution that meets the challenges of leading-edge designs in a very high-cost environment. This powerful platform gives chip developers a digital twin of their future silicon device, allowing them to fully validate their designs and algorithms before incurring the expense and risk of a tapeout.”
Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)