
This article was originally published by indiatimes.com and can be viewed in full here
With each passing year, as the world transitions to digital era technologies, the consumption of data is increasing exponentially. On Facebook alone there are four million posts every minute and in same time Instagram users post 1.7 million likes. Every minute about 400 hours of new video is updated by users around the world. Now that translates to mind-boggling amounts of data generated every second. All this data hold mountains full of intelligence and companies are keen to know and analyse this big data heap.
“2016 will be the year when big data becomes more mainstream and is adopted across various sectors to drive innovation and capture digitization opportunities,” said Neil Mendelson, vice president, big data product management, Oracle.
According to a release from technology major Oracle, big data deployments will become mainstream in 2016. Below is what Oracle predicts for 2016:
Increased demand for data scientists: Professional data scientists will see increasing demand for their skills from established companies. Banks, insurers, and credit-rating firms will turn to algorithms to reduce price risk and guard against fraud more effectively. 2016 will witness an increase in the proliferation of experiments default risk, policy underwriting, and fraud detection as firms try to identify hotspots for algorithmic advantage faster than the competition.
Emergence of new management tools: New management tools will uncouple and enclose the big data foundation technologies from higher level data processing needs. We will also see the emergence of dataflow programming which provides simpler reusability of functional operators, and gives pluggable support for statistical and machine learning functions.
Emergence of big data cloud services with the help of IoT (Internet of Things): IoT cloud services will help manufacturers create new products that safely take action on the analyzed data without human intervention
Big data gives AI something to think about. 2016 will be the year where Artificial Intelligence (AI) technologies such as Machine Learning (ML), Natural Language Processing (NLP) and Property Graphs (PG) are applied to ordinary data processing challenges. The new shift will include widespread applications of these technologies in IT tools that support applications, real-time analytics and data science.


Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)