
Authored by: Eric Hsu, Product Marketing Manager – Keysight Technologies
The pace of wireless innovation is accelerating to enable faster, more responsive and more reliable connections worldwide. The wireless communications industry is ready for significant technology changes across multiple systems. While cellular communication is transitioning from 4G to 5G to enable extreme data throughputs, satellite communications providers are building networks in space to provide high-speed communications from anywhere in the world. Wireless engineers look for breakthrough technologies to maximise system throughput, robust links and data handling capabilities. The key technology components of the wireless system physical layer are wider bandwidths, higher-order modulation schemes and multi-antennae techniques in wireless systems.
Wider Signal Bandwidths
Standard development organisations are looking for wider bandwidths at higher frequency bands because of the limited spectrum allocation. For
example, 5G New Radio (NR) Release 15 specifies frequency range 2 (FR2) from 24.25 GHz to 52.6 GHz and a maximum channel bandwidth of 400 MHz. Release 16 introduces to unlicenced frequency band in the 5 GHz and 6 GHz frequency ranges. By the middle of 2022, 3GPP Release 17 will extend the spectrum range up to 71 GHz for unlicenced bands.
Satellite communications provide connectivity for a variety of television, phone, broadband internet services and military communications. Satellites operate in many frequency bands, from the L to the Ka band. The International Telecommunication Union (ITU) allocates the 71 to 76 GHz / 81 to 86 GHz segment of the W band to satellite services. These frequency segments are of increasing interest to commercial satellite operators for wider bandwidths. On June 30, 2021, a satellite with a W-band radio transmitter successfully launched; more commercial projects in the W band are in the not-so-distant future.
Millimetre-wave frequency bands provide more available bandwidths. Wide bandwidths enable high-throughput data and low latency, but wider bandwidths also introduce more noise that degrades system performance. Wireless engineers need to manage the noise problem for wideband communications. In addition to creating more system noise, wider bandwidths at higher frequency bands introduce other design and test challenges such as path loss, frequency responses and phase noise.
Higher-Order Modulation Schemes
Higher-order modulation schemes achieve faster data rates without increasing signal bandwidth and require closer symbols that are more sensitive to noise. Devices require better modulation quality as the modulation density increases. Table 1 shows the error vector magnitude (EVM) requirements for 5G NR base stations defined in 3GPP release 16 technical specification 38.141. Under consideration is the adoption of 1,024 QAM for 3GPP, which requires tighter design and test margins.
Table 1. Modulation Quality Requirements for 5G NR Base Station Transmitter Tests
Modulation scheme | Required EVM (%) |
QPSK | 18.5% |
16 QAM | 13.5% |
64 QAM | 9% |
256 QAM | 4.5% |
Both wider signal bandwidths and higher-order modulation schemes increase throughput. However, more bandwidth may not mean more system capacity. You must consider the signal-to-noise ratio (SNR) in the communication system. Proper SNR is critical to maintaining communication links. Wider bandwidths introduce more noise into the system, and higher-order modulation schemes are more susceptible to noise. You will need to transmit a high-power signal without distortion and reduce system noise to sustain the communication links. To test your designs, an accurate characterization of each component and subsystem is required, as shown in Figure 1.
Figure 1. Accurately validate RF components with stimulus-response measurements.
Multi-Antennae Techniques
Most wireless systems, whether in commercial applications or aerospace and defence, use multiple antennaes techniques at the receiver, transmitter or both to improve overall system performance. These techniques include spatial diversity, spatial multiplexing, and beamforming. Engineers use multi-antennae techniques to achieve diversity, multiplexing, or antenna gains. Through these gains, wireless systems can increase a receiver’s data throughput and SNR. For example, 5G NR uses eight spatial streams for FR1 to improve spectral efficiency without increasing signal bandwidth. As a result, 3GPP defines performance tests with multiple spatial streams for 5G NR base stations in Technical Specification (TS) 38.141-1. The tests require up to two transmitter antennas and eight receiver antennas, and each test case applies specific propagation conditions, correlation matrix, and SNR. Figure 2 shows a 5G base station performance multiple-input multiple-output (MIMO) test configuration for two transmitter antennas and four receiver antennas with hybrid automatic repeat request (HARQ) feedback.
Figure 2. Test setup for 5G NR base station performance tests using a quad-channel signal generator.
Compared with IEEE 802.11ax, the next-generation Wi-Fi standard, IEEE 802.11be (Wi-Fi 7), provides twice the signal bandwidth, 16 spatial streams, and quadruples the density of a modulation scheme. These together provide data rates up to 40 Gbps. Table 2 illustrates the significant changes in the IEEE 802.11 physical layer.
Table 2. IEEE 802.11 Standard
IEEE 802.11 Standard | Maximum Signal Bandwidth | Modulation Scheme | Number of Spatial Streams |
802.11be (Wi-Fi 7) | 320 MHz | OFDM, up to 4,096 QAM | Up to 16 |
802.11ax (Wi-Fi 6) | 160 MHz | OFDM, up to 1,024 QAM | Up to 8 |
Testing multi-antennae systems that use spatial diversity, spatial multiplexing and multiple antennae arrays requires a test system capable of providing multichannel signals with stable phase relationships between them. However, a commercial signal generator has an independent synthesiser to upconvert an intermediate frequency (IF) signal to an RF signal. A test system must provide precise timing synchronization between channels to simulate the multichannel test signals. The phase between test signals must be coherent and controllable. Figure 3 shows a fully integrated, calibration, and synchronised signal generation and analysis solution that helps you minimize measurement uncertainty for multi-antenna tests.
Figure 3. A multichannel test solution with a Keysight M9484C VXG four-channel vector signal generator and a four-port oscilloscope.
Summary
Next-generation wireless communication systems such as 5G, satellite and Wi-Fi require higher frequencies, wider bandwidths, more complex modulation and multi-antennae designs. This will enable you to face new design and test challenges, including increased test complexity, measurement uncertainty, excessive path loss and noise that impact device performance.
To overcome these challenges requires a scalable test solution that enables higher frequency coverage, wider bandwidths, and multichannel applications with ease and accuracy. A fully integrated, calibrated, and synchronized solution enables you to reduce test complexity and achieve faster, repeatable and accurate results.


Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)