
VANCOUVER, BC – Successful big data projects have five key requirements, says Amy Gaskins, a data scientist with more than a decade of experience designing and implementing data and intelligence projects for the private sector, government agencies and the U.S. military.
In her keynote presentation at the Apache: Big Data North America conference in Vancouver on Monday, Gaskins stressed that five factors can make or break big data projects:
- Buy-in. It’s commonly acknowledged at this point that big data projects need buy-in from senior leadership to succeed. But Gaskins says that’s not enough. You need buy-in at every level, including middle management and workers themselves. “You need to get it from senior leadership, but also the middle and bottom. Why are we doing this? Everyone needs to understand.”
- Urgency. “Is there an existential threat to your business or the mission if you don’t do this?” Gaskins asks.
- Transparency. Do people both inside and outside the organization know what we’re doing and why? Can it be repeated?
- Involvement of non-data science subject matter experts (SMEs). Non-data science SMEs are the ones who understand their fields inside and out. They provide the context that allows you to understand what the data is saying. These SMEs are frequently what hold big data projects together, Gaskins says. “It’s the non-data SMEs that prevent IT and business from fighting each other,” she says. “It’s like magic, and I don’t say that lightly.”
- Psychological safety. This is all about trust. The team members, data scientists and SMEs alike, must be able to trust each other.
“When we talk about requirements for succeeding, we think about Maslow’s Hierarchy of Needs,” Gaskins says. “But the truth is it’s really a system and any part of the system can break down.”
Two examples of big data success and one near miss
Gaskins, who most recently served as big data project director at the National Oceanic and Atmospheric Administration (NOAA), drew on three personal experiences to illustrate the point: helping the 43rd Sustainment Brigade in Afghanistan root out corruption that led to resources falling into the hands of the Taliban, helping MetLife’s Dubai office build an automated solution for detecting insurance fraud, and helping NOAA open up and commercialize its weather data.
The first two projects met each of the five requirements she highlighted and proved successful.
In Afghanistan, Gaskins, once a military intelligence officer herself, served as an embedded mentor with U.S. Army Intelligence and Security Command (INSCOM). She was embedded with the 43rd Sustainment Brigade when its intelligence officer returned to the U.S. The brigade served about 5,000 soldiers, but the intelligence unit only had six people. Gaskins helped pioneer a program that used truck drivers and others to help gather intelligence that the team could analyze for evidence of corruption and bribery.
Working with MetLife in Dubai, Gaskins drew on insurance claims adjusters as SMEs to help build an automated solution to detect fraud that ultimately resulted in a 400+ percent ROI.
The third project had some success, but missed the mark when it came to buy-in from NOAA’s political leadership. It also lacked a sense of urgency as a result. The project did successfully open much of NOAA’s data to the public, though the organizations that have had the most success using it to date are ones that have poached NOAA’s SMEs to understand the data available.
“It was an egalitarian style team with no titles, which allowed everyone to make decisions very easily,” Gaskins says. “We were open, transparent and this made the team really safe.”
This article was originally published on www.cio.com and can be viewed in full


Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)