
Authored by: Nancy Friedrich, Aerospace & Defense Industry Solutions – Keysight Technologies
Government and military investment in fifth-generation (5G) cellular continues to climb worldwide. Contracts already leverage 5G to improve inventory management and related tasks via an “Internet of Military Things” approach. Yet 5G is also set to advance or enable additional use cases in aerospace and defence. From critical communications through non-terrestrial networks (NTN), autonomous driving and even robotic surgery, 5G plans to vastly boost capabilities and performance for military and government users.
Current critical communications networks serve military, government and public safety personnel with ad hoc communications to boost networks in emergencies and fill coverage holes. 5G cellular greatly extends those capabilities, allowing 5G network deployment on bases, in emergency scenarios, and on the battlefield. It also enables a broad variety of applications across military and government, as planes, ships, Humvees and other vehicles will integrate 5G connectivity.
Critical communications use cases for 5G range from enhanced mobile broadband to ultra-reliable low-latency and massive machine-type communications, as well as increased security. Tactical networks could provide augmented / virtual reality in combat and combat training, battlefield telesurgery, tactical self-driving vehicles, ad hoc secure communications and connected battlefield assets such as planes, ships and missiles.
Those self-driving military vehicles will spawn their own opportunities and use cases. Outfitted with 5G for long-haul communications, aircraft, ships and other vehicles can use 5G to enable communications, high-data-rate video conferencing, and Internet of Things sensors. Eventually, these capabilities will evolve into self-driving or autonomous vehicles. The goal is to eliminate service members from some missions, although a hybrid approach will require someone on board to oversee vehicle performance.
Remote Surgery in Real Time
Robotic surgery also requires an expert overseeing operations—but this time, from afar. With robotic surgery, military doctors could quickly perform operations from a distance using robotic arms and cameras. Such surgery promises to raise recovery and survival rates in battlefield scenarios, given the ability to provide treatment sooner in the field. For such systems to succeed, however, these highly intelligent systems must work under various environmental conditions with no downtime.
The growing adoption of 5G networks paves the way for such connectivity by supporting high data transfer, approaching rates closer to real time. To enable doctors to perform robotic surgery remotely, however, 5G networks must eliminate the latency incurred in the relay of information. By promising ultra-reliable low-latency communications (URLCC) from space, 5G non-terrestrial networks (NTN) can provide this level of reliability on a widespread, accessible basis.
5G NTN holds the promise of ubiquitous, or greater, cellular coverage. Using space-bourne or airbourne assets, 5G can enable service in areas otherwise without coverage. While URLCC targets remote applications like robotic surgery, it could eventually provide an alternative to terrestrial connectivity for essential services such as hospitals and emergency responders. Enabled by 5G, doctors can provide better care remotely anytime and anywhere.
The Road Ahead
The Third Generation Partnership Project (3GPP) develops the standards for 5G, with the 5G New Radio (NR) standard continuously evolving. Until now, base stations have been ground-based or terrestrial, but 3GPP ratified NTN as a feature in Release 17. Although challenges arise from the NTN standard being under development, researchers and developers are finding ways to research, prototype or develop beginning with software modelling.
As the aerospace and defence industry successfully moves toward NTN implementation, all of these use cases and capabilities will emerge or come closer to fruition. The critical nature of these use cases demands exceptional care in product design, manufacturing, and deployment. By taking a multistep approach to performance assurance, designers can ensure that their designs meet 5G’s promise for military and government applications.
To provide the highest levels of reliability and security, avoid taking big leaps. You can rely on gradual steps to ensure performance through validation and emulation. For more information on these use cases and how to assure their performance, check out the white paper, Military-Grade 5G: Use Cases and Challenges


Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)