Tokyo-based startup Telexistence has announced it will deploy NVIDIA Artificial Intelligence (AI)-powered robots to restock shelves at hundreds of FamilyMart convenience stores in Japan.
There are 56,000 convenience stores in Japan—the third-highest density worldwide. Around 16,000 of them are run by FamilyMart. Telexistence aims to save time for these stores by offloading repetitive tasks like refilling shelves of beverages to a robot, allowing retail staff to tackle more complex tasks like interacting with customers.
It is just one example of what can be done by Telexistence’s robots, which run on the NVIDIA Jetson edge AI and robotics platform. The company is also developing AI-based systems for warehouse logistics with robots that sort and pick packages.
“We want to deploy robots to industries that support humans’ everyday life,” said Jin Tomioka, CEO at Telexistence. “The first space we’re tackling this is through convenience stores—a huge network that supports daily life, especially in Japan, but is facing a labour shortage.”
The company, founded in 2017, next plans to expand to convenience stores in the U.S., which is also plagued with a labour shortage in the retail industry—and where more than half of consumers say they visit one of the country’s 150,000 convenience stores at least once a month.
Telexistence Robots Stock Up at FamilyMart
Telexistence will begin deploying its restocking robots, called TX SCARA, to 300 FamilyMart stores in August—and aims to bring the autonomous machines to additional FamilyMart locations, as well as other major convenience store chains, in the coming years.
“Staff members spend a lot of time in the back room of the store restocking shelves instead of out with customers,” said Tomioka. “Robotics-as-a-service can allow staff to spend more time with customers.”
TX SCARA runs on a track and includes multiple cameras to scan each shelf, using AI to identify drinks that are running low and plan a path to restock them. The AI system can successfully restock beverages automatically more than 98% of the time.
In the rare cases that the robot misjudges the placement of the beverage or a drink topples over, there’ is no need for the retail staff to drop their task to get the robot back up and running. Instead, Telexistence has remote operators on standby, who can quickly address the situation by taking manual control through a VR system that uses NVIDIA GPUs for video streaming.
Watch TX SCARA at work HERE.
Telexistence estimates that a busy convenience store needs to restock more than 1,000 beverages a day. TX SCARA’s cloud system maintains a database of product sales based on the name, date, time and number of items stocked by the robots during operation. This allows the AI to prioritise which items to restock first based on past sales data.
Achieving Edge AI With NVIDIA Jetson
TX SCARA has multiple AI models under the hood. An object-detection model identifies the types of drinks in a store to determine which one belongs on which shelf. It is combined with another model that helps detect the movement of the robot’s arm, so it can pick up a drink and accurately place it on the shelf between other products. A third is for anomaly detection: recognising if a drink has fallen over or off the shelf. One more detects which drinks are running low in each display area.
The Telexistence team used custom pre-trained neural networks as their base models, adding synthetic and annotated real-world data to fine-tune the neural networks for their application. Using a simulation environment to create more than 80,000 synthetic images helped the team augment their dataset so the robot could learn to detect drinks in any colour, texture or lighting environment.
For AI model training, the team relied on an NVIDIA DGX Station. The robot itself uses two NVIDIA Jetson embedded modules: the NVIDIA Jetson AGX Xavier for AI processing at the edge and the NVIDIA Jetson TX2 module to transmit video streaming data.
On the software side, the team uses the NVIDIA JetPack SDK for edge AI and the NVIDIA TensorRT SDK for high-performance inference.
“Without TensorRT, our models wouldn’t run fast enough to detect objects in the store efficiently,” said Pavel Savkin, chief robotics automation officer at Telexistence.
Telexistence further optimised its AI models using half-precision (FP16) instead of single-precision floating-point format (FP32).
Learn more about the latest in AI and robotics at NVIDIA GTC, running online Sept. 19-22. Registration is free.
Archive
- October 2024(27)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)