Authored by: Hwee Yng Yeo, Industry Solutions Manager, Automotive and Energy – Keysight Technologies
The world of HDR cameras is no longer confined to providing visuals that pop, whether it is from your mobile phone or UHD TV screen. Increasingly, high-performance cameras are enabling modern advanced driver assistance systems (ADAS) and autonomous vehicle (AV) applications. For instance, Waymo’s 5th generation self-driving vehicle sports at least 29 cameras on board, in addition to five lidars and six radars.
The autonomous vehicle of the future will need to support a total bandwidth of anywhere between 3 to 40 GBit/s (~ 1.4 to 19 TB/h), with cameras generating the most data.
Figure 1. Among ADAS and AV sensors, cameras generate the most amount of data per second. Data source: Lucid Motors)
In-Vehicle Network – Zonal Architecture
These various sensor types use different data rates in the backplane, and among the challenges automotive engineers face, is how to reduce the complexity of in-vehicle networking via zonal architecture.
Figure 2 is a simplified representation of zonal architecture: the different sensors types are aggregated into different zones, with the automotive Ethernet acting as an interconnect between each zone or domain.
Figure 2. A conceptual diagram of a zone-based in-vehicle network architecture.
Growing Role of Automotive Serdes
Cameras sensors for ADAS need high data rate and transmission speeds to function as designed. Increasingly, developers are turning to serializer/deserializer (SerDes) connections to link these cameras to the vehicle’s image-processing electronic control units (ECUs). This SerDes connection converts parallel data to serial data (and vice-versa), enabling faster communication between devices using lower cost cables and connectors.
Currently, SerDes solutions are delivered by individual vendors using closed, proprietary standards, but that is set to change. The industry recognises that transparent and unified standards and test requirements will allow chip vendors, automotive Tier 1 suppliers, and car makers to accelerate their development cycle, lower costs, and improve interoperability with other commercial devices.
Already, the industry is addressing some immediate challenges for SerDes in-vehicle networking, such as validating
- interoperability between different media dependent interface (MDI) cables and connectors
- integrity of transmitter, interconnection and receiver performance
- system robustness against various electromagnetic interferences (EMI)
- network security from physical layer through the entire protocol stack.
Interoperability is a real concern. Transceivers are sensitive devices that must be thoroughly tested to ensure they can operate in the notoriously harsh automotive environment that includes heat, vibration, electro-static discharge (ESD), and EMI. Letus look into some examples of transceiver testing.
Transmitter Testing
In the case of the transmitter, we must ensure that the transmitted signal characteristic is good.
Figure 2. Rear view ADAS safety camera transmission with dropped packets.
Figure 2 is an example of a car’s backup camera view with horizontal lines in it. These lines are caused by gaps in the transmission, also known as dropped packets. The driver may still be able to see the image with a few dropped packets, but it would be disastrous for the transmission to blink black when a child should suddenly appear behind the reversing vehicle!
Multiple vendors are involved in enabling this safety feature: camera maker, cable vendor and suppliers of the switch that routes the signal; likewise, the GPU or ECU that processes the data, and not forgetting the brakes that ultimately need to stop the car. We can see why holistic interoperability is of paramount importance.
Channel Testing
In the ADAS camera system, the cable, connector, fixture or harness connecting the cameras is called the link or channel. Link or channel testing is essential to ensure signal integrity is maintained between the transmitter and receiver. Given the cable lengths used in the harsh automotive environment, it is crucial to look at impedance versus frequency, to predict how the channel will perform within the vehicle.
A link segment comprises cables and inline connectors, along with mating connectors at either end. Ultimately, the wire harness is responsible for transporting control and payload data, as well as for providing DC power to remote sensors.
Channel characterisation for SerDes links consists of both time domain and frequency domain analysis. This requires looking at the cabling system, the MDI and the fixturing and test setup requirements.
The actual MDI connector is not standard, but there are some rigid specifications to help ensure that unwanted interactions between the MDI and cable are minimized. Figure 3 provides an example of an H-MTD connector that is being used for multi-gig automotive Ethernet and could also be used for emerging SerDes standards.
Figure 3. Example of MDI connector with H-MTD and SMA.
In channel tests, we need to look for errors such as impedance mismatch, signal distortions or defects and cross talk between the cables
Receiver Testing
Receivers are responsible for making sense of the data sent over the link, then passing it along for further processing in an ECU or display device. Bit errors at the receiver will result in lost or corrupted data coming from safety-critical sensors like camera, radar and Lidar.
Proper receiver functionality becomes increasingly difficult, especially when sent over long channels exposed to many simultaneous sources of noise. To characterise the receiver’s capabilities, we must measure error levels in the presence of multiple noise sources, including narrow band interference, bulk current injection, transients on-line and alien cable bundle crosstalk.
The measurement setup can include noise sources, amplifiers and coupling circuitry that allow precise levels of noise to be injected onto an active SerDes link. The device under test (DUT) signal quality registers are then queried to verify whether the receiver could interpret symbols correctly in the presence of noise. The emphasis in receiver testing is to stress the receiver to ensure it can still maintain bit error (BER) rates.
Ivn Tests Become Vital
According to MarketsandMarkets, the global automotive camera, and integrated radar and camera market size is projected to grow to USD $10.1 billion by 2026, from USD $6.1 billion in 2021.
With more cameras and other sensors needed to ensure increased safety and enable the advancement of autonomous driving, it is vital that in-vehicle networks are tested to ensure interoperability, and performance criteria are met for their mission-critical functions.
Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)