
Companies are generating more data, and they are holding on to it for longer. However, this data is often then left alone and unused. Research in the Forrester Wave on Hadoop distributions found that, on average, between 60% and 73% of all data within an enterprise goes unused for business intelligence (BI) and analytics.
Having all this data and not making use of it is problematic for both IT and the business. With apologies to Samuel Taylor Coleridge, there is “data, data everywhere, nor any stop to think.”
One of the biggest challenges is that Hadoop is built for analysts and data scientists, rather than business users. The data that goes into a Hadoop instance can be useful to those business professionals, but it’s not easy to get that data out in a suitable format that they can work with.
Alongside this, there are other big data implementations that could also be used by the business. Operational data stores such as Cassandra or the other NoSQL databases could provide value if tapped, while the community around Apache Spark is growing massively too. However, you still need to be a data scientist or hard core data-analyst to write SparkSQL. Each of these big data platforms could be useful if analytics can be brought to bear on the data they create.
The challenge here is about more than simply reporting on what data is there. Companies must understand what role each of those big data tools provides and how it feeds into the whole mix. Working across divisional teams, different silos of data and various big data platforms can lead to data remaining a technical project, rather than a business one.
One area perhaps most often misunderstood is that data in a data lake can also be in silos. Consequently, it’s very hard for any business user to find the right data in the lake and be confident in that data. Building up the knowledge base of users across the business and helping them make use of data is therefore essential for the future.
Making big data ready for the business to use
With all this data being collected, it’s important to consider how to put it to better use. Rather than looking at this as a technical project, data should be looked at as a business resource for departments to use. To get this started, look at where data is being collected by the departments in their applications, as well as where any big data stores may have information that can be used by those teams.
This preparation work around what data exists can then be used to look at what objectives those teams have. The likes of marketing and sales will focus on customer acquisition, while operations and procurement will look for efficiencies and ways to save money. The issue for IT is in making data understandable and useful for them in meeting those goals over time. Translating those business goals into key performance indicators (KPIs) can help, as data can then be used to influence the KPIs. The idea is to provide data in a way that makes sense for that individual, group or department, while maintaining consistency across this set of diverse audiences.
Doing this involves looking at where teams collaborate – for example, where sales teams take leads from marketing, or where operations asks procurement to buy goods and services. Comparing data from those different applications can provide opportunities to influence decisions that are made, while also putting big data to better use.
Making data part of the furniture
Whether companies appoint someone specifically to manage use of data within the business, or keep it as part of the CIO’s remit, the deployment of analytics has to change as big data continues to grow in importance. Giving people access to this data is a process problem, as the results can force changes in behaviour that are perceived as unnecessary or contrary to their experience.
The role of those team KPIs can be brought into play, as well. Discussing the results and how the business unit or department uses data currently can help show a path to better performance. This can also demonstrate that IT is aiming to solve the same problem as the department manager, which can lead to more trust between the individuals involved.
The issue here is when KPIs are based on data from multiple departments. This can lead to those teams feeling that they lack control over the outcomes. The approach should be to work with those teams so that the overall business process is understood first, then the analytics reporting or dashboard created. Data sources can be networked together and then the results given over to those who require access. By working on collaboration first, on the analytics side, each business team can be involved.
This makes it more likely that the analytics results will get used regularly. It’s also possible to run analytics projects alongside a control team that does not get access to the results. When the analytics data gets used and supports better performance, more individuals within the team will want access.
For BI, big data can be a vital part of the range of data sources that each business department uses. However, the aim should be to make users smarter in their daily activities. Focusing on business aims can help ensure that the right data gets analysed and provided to those users at the right time.
This article was originally published on www.computerweekly.com and can be viewed in full


Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)