Databricks, the lakehouse company, has announced the launch of Databricks Model Serving to provide simplified production Machine Learning (ML) natively within the Databricks Lakehouse Platform. Model Serving removes the complexity of building and maintaining complicated infrastructure for intelligent applications.
Now, organisations can leverage the Databricks Lakehouse Platform to integrate real-time ML systems across their business, from personalised recommendations to customer service chatbots, without the need to configure and manage the underlying infrastructure. Deep integration within the Lakehouse Platform offers data and model lineage, governance and monitoring throughout the ML lifecycle, from experimentation to training to production. Databricks Model Serving is now generally available on AWS and Azure.
With the opportunities surrounding generative Artificial Intelligence (AI) taking center stage, businesses feel the urgency to prioritise AI investments across the board. Leveraging AI/ML enables organisations to uncover insights from their data, make accurate, instant predictions that deliver business value and drive new AI-led experiences for their customers.
For example, AI can enable a bank to quickly identify and combat fraudulent charges on a customer’s account or give a retailer the ability to instantly suggest complementary accessories based on a customer’s clothing purchases. Most of these experiences are integrated in real-time applications. However, implementing these real-time ML systems has remained a challenge for many organisations because of the burden placed on ML experts to design and maintain infrastructure that can dynamically scale to meet demand.
“Databricks Model Serving accelerates data science teams’ path to production by simplifying deployments, reducing overhead and delivering a fully integrated experience directly within the Databricks Lakehouse,” said Patrick Wendell, Co-Founder of and VP of Engineering at Databricks. “This offering will let customers deploy far more models, with lower time to production, while also lowering the total cost of ownership and the burden of managing complex infrastructure.”
Databricks Model Serving removes the complexity of building and operating these systems and offers native integrations across the lakehouse, including Databricks’ Unity Catalog, Feature Store and MLflow. It delivers a highly available, low latency service for model serving, giving businesses the ability to easily integrate ML predictions into their production workloads. Fully managed by Databricks, Model Serving quickly scales up from zero and back down as demand changes, reducing operational costs and ensuring customers pay only for the compute they use.
“As a leading global appliance company, Electrolux is committed to delivering the best experiences for our consumers at scale. We sell approximately 60 million household products in around 120 markets every year. Moving to Databricks Model Serving has supported our ambitions and enabled us to move quickly. We reduced our inference latency by 10x, helping us deliver relevant, accurate predictions even faster,” said Daniel Edsgärd, Head of Data Science at Electrolux. “By doing model serving on the same platform where our data lives and where we train models, we have been able to accelerate deployments and reduce maintenance, ultimately helping us deliver for our customers and drive more enjoyable and sustainable living around the world.”
Databricks’ unified, data-centric approach to ML from the lakehouse enables businesses to embed AI at scale and allows models to be served by the data and ML training platform. Lakehouse provides a consistent view of data throughout the entire ML lifecycle, which accelerates deployments and reduces errors, without having to stitch together disparate services. With Databricks, organisations can manage the entire ML process—from data preparation and experimentation to model training, deployment and monitoring—all in one place. Databricks Model Serving integrates with Lakehouse Platform capabilities, including:
- Feature Store. Provides automated online lookups to prevent online/offline skew. Define features once during model training, and Databricks will automatically retrieve and join the relevant features in the future.
- MLflow Integration. Natively connects to MLflow Model Registry, enabling fast and easy deployment of models. After providing the underlying model, Databricks will automatically prepare a production-ready container for model deployment.
- Unified Data Governance. Manage and govern all data and ML assets with Unity Catalog, including those consumed and produced by model serving.
Databricks is committed to driving innovation with its Lakehouse Platform and delivering more capabilities that make powerful, real-time ML accessible to any organisation. This includes new quality and diagnostic features coming soon for Databricks Model Serving, which will automatically capture requests and responses in a Delta table to monitor and debug models and generate training data sets. Databricks is also enabling GPU-based inference support, which is available in preview.
To learn more about how Databricks enables production ML at scale with the Lakehouse, read the Databricks blog or sign up to join the ML Virtual Event on the 14th of March 2023, to hear from Databricks product leaders and customers.
Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)