
Hadoop emerges as the corporate standard for big data management, but success depends on governance, cataloging, and accessibility. Here’s a look at two camps of vendors in the Hadoop ecosystem that are bringing order and accessibility to big data.
The good news is that 10-year-old Hadoop is maturing quickly. The bad news is that many companies are still struggling to get beyond pilot projects and support many applications on this new data-management platform.
First, let’s consider the industry leaders that are doing great things with data lakes, drawing on examples from the recent Hadoop Summit:
In financial services CapitalOne has been making waves this year, appearing at multiple events to talk about its Hadoop and Spark-based fraud-detection and its big data analytics, streaming, and security work.
In retail Macy’s embraced Hadoop more than five years ago to power insights for Macys.com. Today it’s doing more sophisticated cross-channel analysis, driving personalized promotions encouraging online customers to shop in stores and in-store customers to obtain out-of-stock and online-only items at Macys.com.
In manufacturing Ford relies on Hadoop for connected car capabilities. Ford does filtering and decision-making at the sensor and car level while uploading crucial data points for centralized insight and analysis. For example, FordPass app users can remotely check their car’s fuel level, location, and diagnostic error codes, but detailed data used by service technicians remains in the car’s black box.
In insurance Progressive has been a pioneer of usage-based pricing with Progressive SnapShot. The company has more than 15 billion miles’ worth of driving data in a Hadoop-based data lake, but it can drill down and offer discounts to individual policy holders based on factors such as their total miles driven, nighttime driving, and speed and braking habits.
These examples are inspiring, but behind every breakthrough there’s been a lot of hard work. And many fast followers are still struggling. Here’s a recent sampling of criticisms I’ve heard from Hadoop users:
- The VP of platforms and architecture at a digital marketing company said, “better data governance is the number-one priority on our Hadoop wish list.”
- The director of analytics at a logistics firm said “Hadoop was messy on the data-lineage end. We spent months working out the details for data ingestion.”
- A BI solutions architect at an aerospace firm said “We have three people working with Hadoop, but we have more than 150 business users who need access to the data. I’d like to see better ease of use for business users.”
The report explores three areas where commercial vendors are filling gaps in the Hadoop stack: data management and governance, data cataloging and metadata management, and data discovery and self-service data prep.
These three gaps are being filled by two camps of vendors that are complementing what’s available in Hadoop. Incumbent data integration vendors focusing on the data lake include IBM, Informatica, Oracle, Pentaho/Hitachi, SnapLogic, Syncsort, and Talend. Next-generation vendors that have emerged in the big data era include Alation, Collibra, Datameer, Podium Data, Paxata, Trifacta, Tamr, Waterline, and Zaloni.
Both camps are bringing automation and repeatability to data lake management and governance. They’re also making the contents of the data lake more accessible and many are abstracting users from the complexities of manual coding in Pig, Hive, Spark, and other open source components.
As the report explains, a data lake is not a replacement for a conventional enterprise data warehouse, but many data-processing and data-analysis workloads are shifting to this new platform. The choice among incumbents and next-generation vendors depends on the specifics of your deployment. The report offers vendor-, category- and capability-specific descriptions and selection criteria as well as big-picture advice on setting your analytic direction.
This article was originally published on wwwzdnet.com and can be viewed in full


Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)