The convergence of IoT and Big Data
The Internet of Things (IoT) and big data are converging to make business a lot smarter. The eruption of information is being powered by the explosive growth of connected devices. According to IDC, by 2018 there will be 22 billion of these – especially GPS trackers and phones. The latter have propelled the IoT to the highest point of the 2015 Gartner hype cycle: the peak of inflated expectations.
Enterprises and government agencies are using analytics to find new ways to leverage big data from these disparate information sources to enhance service, improve safety, increase efficiency and drive growth. Organisations typically have multiple goals for big data initiatives, such as enhancing the customer experience, streamlining existing processes, achieving more targeted marketing and reducing costs. Data analytics allow them to draw more insight from large and complex datasets, helping to predict future customer behaviour, trends and the likely outcomes of complex initiatives.
However while value can be found within each organisation’s dataset, the real value is located in the intersection between data sets. And for that to be released, three fundamental conditions have to be addressed: aggregation and sharing, analysis and protection.
The algorithm economy
It’s an era of extreme information and, while companies will have more (and more accessible) data, the data mountain itself presents a problem. To derive any value from it, organisations need to be able to draw conclusions from it in real-time. If a business can’t derive value from its collected data, then collecting data is just another cost.
Keeping on top of the data mountain is all about processing it in useful ways. That means asking the right questions, and that’s at the heart of what is now being called – by Gartner Group in particular – the algorithm economy. Powerful and complex algorithms underpin the analytical tools that turn data into insights, help manage access to extreme information and drive innovation in rapid information processing.
Transportation systems, in particular are set to benefit from the convergence of big data and the IoT. Companies are increasingly using embedded sensing and tracking technologies to reduce business costs and improve safety. That’s generating a mass of data that algorithms can mine to show how to derive value that’s not yet being realised to help fleets of taxis, couriers, trucks and buses optimise route planning, improve service delivery and reduce fuel consumption. Simultaneously, government can make the data available to help consumers decide on their own best transportation choices.
Yet while other industry sectors such as aviation are already reaping the benefits of big data investments, mining data and distilling it into useful, publicly available conclusions remains a real challenge for government and the transport industry.
Turning mountains into vantage points:
That is changing. Increasingly integrated technologies mean more devices talking to each other creating many mountains. The challenge is to bring these together. No matter how vast their individual proprietary data sets, companies working in isolation will not be able to get full value from the totality of information that is being captured. The road transport industry needs to come together as a whole and aggregate the information in way that can used by the entire industry, and not owned by any one player.
Stand-alone applications and infrastructure are evolving to become more integrated and communicative, and technologies are already available that will allow companies to aggregate staggering amounts of data from multiple sources, going well beyond the data held in their proprietary fleet tracking and other systems. If you can integrate feeds from CCTV, toll systems, Wellington’s intelligent motorway system, accident reports and other data sources you’d have an unprecedented collection of data waiting to be mined by public and private organisations to capture a more holistic view of real-world conditions that affect their operations.
Government organisations can mine this mountain of data to form a historical perspective to help design safer roads, such as identifying contributing factors to accident hot spots. But the real power is in using analytics to predict issues before they happen, such as being stuck in a traffic jam, and automating preventative action such as re-routing drivers or opening additional lanes.
Such action should help transport companies avoid traffic jams and crashes to save fuel, time and labour costs. Similarly, providing such information to commuters would allow them to opt to take public transport in response to traffic alerts.
The final requirement is protection. Privacy concerns about data security or data usage represent a liability, where disclosing confidential information could compromise the safety of employees, breach legal statutes or inadvertently relinquish an advantage to a competitor. This requires understanding the difference between collective anonymised data and an individual’s information and the appropriate use, access controls and data security required for each. But if the road transport industry can meet these requirements, today’s data mountain will provide a lofty vantage point to set future directions.
This article was originally published on www.itbrief.com and can be viewed in full


Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)