MapR® Technologies, Inc., announced that Edwards Ltd., a world leader in vacuum and abatement solutions, is using the MapR Data Platform to develop semiconductor industry solutions to analyze data from its equipment within customer sites to deliver predictive maintenance and near real-time anomaly detection as part of a major step towards an Industry 4.0-based smart connected portfolio.
Edwards is a leading developer and manufacturer of sophisticated vacuum products, abatement solutions, integrated solutions and related value-added services. Edwards products are critical sub-systems to manufacturing processes for semiconductors, flat panel displays, LEDs and solar cells; are used within an increasingly diverse range of processes. Edwards maintains 30 international sites, employing over 4,200 staff serving all major global semiconductor manufacturing customers.
MapR will provide a core technology in a major shift for Edwards that embraces real-time data analysis from its equipment to help its customers improve quality and yields in vacuum-intense semiconductor manufacturing processes.
As David Hacker, strategic marketing manager for Edwards explained, “The manufacturing of modern semiconductors include up to 1,000 process steps with a significant and increasing proportion requiring vacuum and abatement systems and a typical plant may have Edwards assets measured in the 1,000’s as critical sub-systems for these processes. Our vision is to have all of these assets delivering near real-time information on their performance and the detection of anomalies that may occur with a deeper level of scrutiny. This allows us to create more evidence based, relevant information on quality of vacuum service to enhance the knowledge provided to customers so that they can quickly adapt to any situation to deliver more efficiency and better quality of process outcomes. Along with this, the data will enable increased and predictable overall equipment availability along with ‘adaptive triggers’ for scheduled maintenance.”
Edwards chose MapR to enable the capture and processing of diverse data from a wide range of sources that is instrumental in helping it build the machine learning models that will underpin many of these smarter systems. “Our current and medium term aim is to include sensor data to enhance the intrinsic Edwards asset data and to be able to make this service available to other critical sub-system providers to create a more granular and broader understanding of the environment that will ultimately lead to adaptive control based on data analytics,” said Hacker.
“We have chosen MapR following a standard due-diligence method and the experience of the openness of MapR in providing open exposure of their customers to us and thus permitting us to form a preview of what it will be like to work with MapR,” said Hacker. “As our industry sector is still largely focused on on-premise solutions for its data, the ability to deliver on-premise, hybrid and cloud implementations that all have an intrinsic and universal security model offers us a seamless future migration as and when this industry sector opens up to that transition.”
“Our immediate needs also include the potential to interface seamlessly to other platforms within our customers’ sites so MapR’s provision of comprehensive API’s is vital, but this is also important for us internally as we need to vertically integrate to Edwards enterprise resource planning and other related digital services,” Hacker added.
The first deployment of the MapR platform is currently underway in a joint project between Edwards and Fraunhofer-Gesellschaft, in a cooperation that involves research, development and evaluation of specific sensor and IIoT technologies, with the aim of generating and securing high-quality data to feed advanced analytics. Key is the research on the correlation between process and pump behaviour to be piloted in the semiconductor cleanroom environment of Fraunhofer EMFT with a key role played by this new technology stack based on the MapR Data Platform.
Novel Machine Learning techniques will be used to detect anomalies in sensor data. For this purpose, data fusion of several sensor data for combination and pattern recognition, as well as algorithms for detection of specific states of instability are needed. The aim is to improve the process of predictive maintenance by exploring new Machine Learning algorithms fed with sensor data from above and below the cleanroom floor, to predict future performance and anomalies.
A secure connection will be implemented to allow data, Machine Learning models and equipment status to be exchanged in real-time between secure locations: on-premise at the Fraunhofer EMFT CMOS line, and remote in the cloud or Edwards HQ. As well as reducing response time for service, this simplifies analytical model development and deployment. The aim is to demonstrate a new reference architecture, consistent with the principles of RAMI 4.0, but tailored to meet the challenging demands for data and IP security imposed by the semiconductor manufacturing sector.
Jim Stock, vice president of EMEA for MapR added, “Pioneers across many industries recognize that working closely with suppliers, partners and customers is vital to deliver new insights and breakthrough services. Our implementation with Edwards highlights the benefits of a trusted platform to enable multiple partners to seamlessly collaborate on data intensive projects in areas such as the Internet of Things and Machine Learning while retaining the highest levels of security and control.”
Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)