Fujitsu Laboratories Ltd. and Kumamoto University announced the development of technology to easily create the training data necessary to apply AI to time-series data, such as those from accelerometers and gyroscopic sensors.
Time-series data obtained from sensors does not include anything other than every-changing numerical data. Therefore, in order to create training data for use in machine learning, it was necessary to manually attach finely detailed labels to the data in accordance to its changing values, indicating what was done and when at each point where the numerical values changed. For this reason, huge numbers of man-hours were required, and the use of AI with time-series data had seen limited progress.
Fujitsu Laboratories and Kumamoto University have enabled the automatic creation of highly accurate training data with appropriate labels for each action, just by manually attaching a single label to each longer time period, even if they include multiple actions, indicating the major action in that time period according to human judgement. Because this significantly reduces the number of man-hours required, this technology will accelerate the use of AI with time-series data. The new development is expected to enable easier installation of services such as fall detection, operational functionality checks, and abnormality detection for machines, in smartphones and various other devices.
Development Background
In recent years, with the evolution of technology such as the Internet of Things (IoT), it has become possible to obtain a large amount time-series data from a variety of sensors. For example, by developing a functionality in which AI can determine the meaning of the motions of people and objects from the characteristics captured by accelerometers, it is expected that advanced functionality for monitoring people and machines can be incorporated into smartphones and various equipment. In order to apply AI to this sort of time-series data, it is necessary to create training data to train AI.
Figure 1: Examples of AI monitoring using time-series data
Issues
Time-series data obtained from sensors consists of just numbers recording values from the sensors moment by moment, so it is necessary to attach meaning to the data indicating “what” (labels) and “when” (segments) in creating training data for AI. For example, data from accelerometers when a person goes running includes intermingled data from when a person is running, when they are walking, and when they are standing still. So in order to create training data for AI, the data needs to be separated into segments, and labeled as “Running” “Walking” and “Stopped.”
Conventionally, to create this sort of training data, the typical process was to record a video of the behavior while measuring the time-series data, identify the type of behavior seen with the changes in the numerical values at a second-by-second level, and manually attaching the labels. Because this process required a significant amount of work and time, the application of AI to time-series data saw limited progress, and there was a demand for a technology to automate the labeling process and reduce the workload.
About the Newly Developed Technology
Now, Fujitsu Laboratories and Kumamoto University have developed a technology that can automatically create highly accurate training data that enables the use of AI with time-series data, just by inputting a label expressing the main action underway over a longer time segment (for example, one hour). The features of this newly developed technology are as follows.
1. Extracting appropriate segments
Looking at time-series data, this technology can learn characteristics of times when the same activity is ongoing and characteristics of times when the activity changes, and can then automatically extract appropriate time periods from time-series data with actions based on same characteristics(1).
2. Highly accurate labeling
With this technology, users attach a single broad label for long segments of data (for example, one hour), such as “running” if the majority of the segment is spent running. After a deep neural network is trained to predict such labels and the resulting estimated labels can be used to calculate the segment of the time-series data that most contributed to that prediction. Also by adding up the time periods that have a high degree of contribution as label candidates, this system can create training data capable of accurate prediction.
Figure 2: Diagram of the newly developed technology
Effects
Fujitsu Laboratories and Kumamoto University conducted a trial where they attached labels to time-series data from accelerometers while performing mock work processes in a factory such as polishing. As a result, they confirmed that this technology was able to correctly label 92% of time periods. They judged that this was equivalent to the highly accurate results obtained when using data that was manually labelled in detail as training data. With this technology, one can easily create training data for AI use from time-series data, and further development is expected for the functionality that uses AI to determine activities captured by sensors. In addition, because this technology makes determinations based on just the numerical characteristics of time-series data, and does not rely on the type of sensor, it could also be applied to time-series data obtained from devices such as temperature sensors and pulse wave sensors.
Future Plans
Fujitsu Laboratories and Kumamoto University aim to conduct field trials using time-series data from a variety of fields, with the goal of commercializing this technology as a preprocessing technology for time-series data as part of Fujitsu Human Centric AI Zinrai, Fujitsu Limited’s AI technology, during fiscal 2019.
(1) Automatically extract appropriate time periods with actions based on same characteristics from time-series data Using technology from Kumamoto University.
Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)