Authored by: Nancy Friedrich, Aerospace & Defense Industry Solutions, Keysight Technologies
Radar and electronic warfare (EW) systems exist in a never-ending battle to dominate each other. When a radar appears to an EW system, the EW system should evaluate it and potentially reprogram itself in a fast manner to defeat that radar threat.
From the radar system point of view, the goal may be to verify that it can mitigate newer cognitive jamming or EW capabilities. As a result, their goal is to verify that EW systems cannot successfully launch an electronic attack against them.
For both types of systems, simulating and recording these scenarios in the real-world signal environment offers a clear view into the systems’ responses and, ultimately, the outcome. Understanding how your system was defeated will help you make changes to your system so that it prevails in the EM spectrum environment in the future.
Spectrum Challenges
To prove the performance of mission-critical radar and EW systems, developers increasingly face test limitations in terms of both cost and time. Yet radar and EW systems must overcome growing challenges to optimal performance, as they operate in the increasingly crowded, unpredictable electromagnetic spectrum operations environment (EMSO). The radiofrequency (RF) spectrum grows only more congested as intentional aerospace defence systems intersect with many potential interferers, such as terrestrial broadcast signals and cellular and satellite communications. At the same time, modern threats and countermeasures flood the modern EM spectral environment with thousands of emitters, including radios, wireless devices, and radar transmissions. This, in conjunction with advanced digital signal processing (DSP), creates a dramatically complex EM spectrum. By recording their system’s performance with evolving radar recording capabilities, it is possible to gain crucial information to validate both EW emitter and radar systems.
Burden of Test
When it comes to EW and radar systems, the testing process is exhaustive and expensive. Range testing a new fighter jet, for instance, demands a large investment. By limiting testing time and then closely evaluating a recording of that testing, it is possible to verify that you attained the measurement of interest and verify the response to it – whether you are validating that the system did respond properly or verifying that an improvement needs to be made.
For radar systems, it is essential to detect anything in the environment – unintentional or intentional – that presents as noise-like to the radar. By recording the EMSO environment in those dense environments while you are testing your radar, you can see:
- Did my radar work correctly?
- What else was present in that environment when it worked right or did not work correctly?
- How does the radar respond in a given scenario?
- How is the radar system performing over time?
This knowledge provides confidence in radar performance in the presence of both intentional and non-intentional interferers.
Validating EW Emitters
Similarly, electronic warfare emitter validation is critical to know how your systems will perform in the EM spectrum environment. Increasingly wider bandwidths and agile signals continue to emerge, complicating this task. Emitter validation demands quantitative verification and validation from an intentional stimulus in the lab, such as an anechoic setting. The goal is to capture enough signals of interest over a diverse range of frequencies. Longer simulation and overall technique times need to be evaluated over a longer frequency range and bandwidth.
The goal of such validation is twofold: acquisition and analysis. The priority in terms of acquisition is being ready to record – having overall system simulators and the device under test ready and coordinated for the overall scenario. The focus is on assuring that the correct scenario is being transmitted and received at the correct time in order to not waste lab time. In contrast, the analysis aspect is more concerned with examining the recorded data in detail for proper simulation, stimulus, reaction, etc. Through this process, the goal is to gain knowledge around points like:
- Will the platform correctly operate and engage in the theatre or operational environment?
- What happened during a given scenario time?
Beyond their multifaceted forms and capabilities, EW systems boast high intelligence. With the increased use of adaptive programming, these systems continue to grow smarter. In response to observed effects on the battlefield, they will alter operation via radiated waveforms, techniques, or timing. Waveforms, in particular, change nearly instantaneously. As their responses become more intelligent, it becomes more critical to gauge performance thoroughly to predict the system’s response.
Facing a Complex Future
By recording, you also may capture other systems lurking in the spectrum. In today’s spectrum environment, you need to know that your systems will remain effective when faced by unexpected signal events in dense signal environments. Within the operating radar environment, the range of complexities may include ground clutter, sea clutter, jamming, interference, wireless communication signals, and other forms of EM noise. It may also include multiple targets – many of which utilize materials and technologies that present a reduced radar cross-section. By recording the EMSO environment during testing, you can see what signals are present and whether they have any impact.
With the increasing complexity of the EM battlefield, accurately validating system under test (SUT) stimulus and output data to ensure correct operation is critical. This task becomes more critical as the systems themselves evolve quickly, incorporating new DSP techniques, architectures, materials, and approaches. These systems increasingly operate at higher frequencies as well and demand wider bandwidths. Such complexity makes testing much more difficult. By adding radar recording capability, it is possible to capture and record signals of interest continuously through a test threat scenario in order to truly validate proper operation.
For modern missions, timelines are short and the work increases along with complexity. You need tools that verify if all signals in the test scenario were acquired correctly, if the SUT responded correctly to the threat scenario, and if the correct signals were generated at the right time. The EMSO environment will only grow denser and more crowded. Without being able to predict everything in that environment, knowing how your EW or radar system will perform in the theatre or during an engagement becomes a critical step toward prevailing in that environment.
Keysight offers a variety of solutions to support radar recording and EW and radar test and analysis. The Z2099B Radar Recorder (KRR) is a fully integrated wideband multi-channel system designed for recording and analysis of pulsed signals. In addition, standard hardware and software make the Keysight UXR oscilloscope and PathWave 89600C Vector Signal Analysis Software (VSA) software a commercially off the shelf (COTS) solution for analysing multichannel EW signals.
Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)