Neo4j®, the world’s leading graph database and analytics company, announced new native integrations with Google Cloud that boost GraphRAG and dramatically speed up generative AI application development and deployment across several crucial stages.
The results solve a problem for enterprises that struggle with complexity and hallucinations when building and deploying successful GenAI applications requiring real-time, contextually rich data and accurate, explainable results. The integrations are available now.
“Generative AI can significantly increase the value customers get from critical business data. By utilising Google Cloud’s Gemini models and Vertex AI, Neo4j can increase the speed and accuracy of generative AI application development,” said Ritika Suri, Director of Technology Partnerships at Google Cloud.
Knowledge graphs capture relationships between entities, ground LLMs in facts, and enable LLMs to reason, infer, and retrieve relevant information accurately and effectively. According to Gartner® in its in November 2023 “AI Design Patterns for Knowledge Graphs and Generative AI” report, “Data and analytics leaders must leverage the power of large language models (LLMs) with the robustness of knowledge graphs for fault-tolerant AI applications.”
Retrieval Augmented Generation (RAG) is the technique by which LLMs access external datasets. Combining knowledge graphs with RAG, known as GraphRAG, ensures that GenAI outcomes are accurate, explainable, and transparent, including with real-time data.
GraphRAG with Google Cloud: Capabilities and Benefits
Developers can easily apply GraphRAG techniques with knowledge graphs to ground LLMs for accuracy, context, and explainability, enhancing GenAI innovation. Specifically, they can:
- Quickly create knowledge graphs for accurate, explainable results.Developers can easily create knowledge graphs with Gemini models, Google Cloud VertexAI, LangChain, and Neo4j from unstructured data like PDFs, web pages, and documents—either directly or loaded from Google Cloud Storage buckets.
- Ingest, process, and analyse real-time data in seconds.Developers can use Flex templates in Dataflow to create repeatable, secure data pipelines that ingest, process, and analyze data across Google BigQuery, Google Cloud Storage, and Neo4j—supplying knowledge graphs with real-time information and enabling GenAI applications to provide relevant, timely insights.
- Build GenAI applications powered by knowledge graphs on Google Cloud.Customers can use Gemini for Google Workspace and Reasoning Engine from Vertex AI platform to easily deploy, monitor, and scale GenAI apps and APIs onto Google Cloud Run. Gemini models are trained on Neo4j’s training data to automatically turn any language code snippets to Neo4j’s Cypher query language. The result makes application development faster, easier, and more collaborative by integrating natural language understanding and generation capabilities within various applications and environments.
A History of Innovation: Additional Partnership Milestones
Regulated customers will be able to meet strict data residency, security, and regulatory requirements in Google Distribution Cloud (GDC) Hosted, which became generally available in March. GDC is an air-gapped private cloud infrastructure and edge environment designed specifically for public sector organisations and regulated enterprises. Neo4j is the preferred launch partner for GDC to provide Graph Database and Analytics capabilities.
“GraphRAG with Neo4j and Google Cloud enables enterprises to move from GenAI development to deployment much faster and see value from their production use cases. Our latest milestone combines the power of graph technology, GenAI, and cloud computing excellence, enabling enterprises to achieve better results faster from their connected data, and innovate with GenAI,” noted Sudhir Hasbe, Chief Product Officer at Neo4j.
Customers can also run in-memory graph analysis of complex hidden data patterns using Neo4j’s catalogue of 70+ graph data science functions directly on BigQuery data and from BigQuery SQL using Apache Spark Stored Procedures.
In addition, Neo4j this month won Google Cloud’s Technology Partner of the Year in the Data Management category for the second year in a row. Neo4j in 2023 was the only native graph vendor to launch native product integrations with GenAI features in Google Cloud Vertex AI platform. Neo4j launched its strategic partnership with Google Cloud in 2019. Neo4j also integrated native vector capabilities into its core graph database last year, enabling it to serve as long-term memory for LLMs.
“Data² uses generative AI and knowledge graphs to enable organisations to maximise the potential of their data. Today’s announcement of Neo4j’s new native integrations with Google Cloud, particularly the ability to enhance GenAI applications with Neo4j knowledge graphs, marks an exciting step forward for the industry,” said Jeff Dalgliesh, Chief Technology Officer at Data². “With Neo4j’s GraphRAG approach and Google Cloud’s robust infrastructure, we will be able to deliver even more powerful, explainable AI insights to our clients, helping them make critical decisions with confidence and speed.”
These GraphRAG capabilities are available now. For more information, read Neo4j’s blog post.
Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)