
Hewlett Packard Enterprise has announced the launch of HPE Swarm Learning, a breakthrough Artifficial Intelligence (AI) solution to accelerate insights at the edge, from diagnosing diseases to detecting credit card fraud, by sharing and unifying AI model learnings without compromising data privacy.
HPE Swarm Learning, which was developed by Hewlett Packard Labs, HPE’s R&D organisation, is the industry’s first privacy-preserving, decentralised Machine Learning (ML) framework for the edge or distributed sites. The solution provides customers with containers that are easily integrated with AI models using the HPE swarm API. Users can then immediately share AI model learnings within their organization and outside with industry peers to improve training, without sharing actual data.
“Swarm learning is a new, powerful approach to AI that has already made progress in addressing global challenges such as advancing patient healthcare and improving anomaly detection that aid efforts in fraud detection and predictive maintenance,” said Justin Hotard, Executive Vice President and General manager, HPC & AI, at HPE. “HPE is contributing to the swarm learning movement in a meaningful way by delivering an enterprise-class solution that uniquely enables organizations to collaborate, innovate, and accelerate the power of AI models, while preserving each organisation’s ethics, data privacy, and governance standards.”
Introducing a New AI Approach to Securely Harness Insights at the Edge
Today, the majority of AI model training occurs at a central location, which relies on centralised merged data sets. However, this approach can be inefficient and costly due to having to move large volumes of data back to the same source. It can also be constrained by data privacy and data ownership rules and regulations that limit data sharing and movement, which can potentially lead to inaccurate and biased models. By training models and harnessing insights at the edge, businesses can make decisions faster, at the point of impact, leading to better experiences and outcomes. Additionally, by sharing learnings from one organisation to another at the data source, various industries across the world can unite and further improve intelligence that can lead to tremendous business and societal outcomes. However, sharing data externally may raise a challenge for organizations that are required to meet data governance, regulatory or compliance requirements, mandating that data stay at its location.
HPE Swarm Learning uniquely enables organisations to use distributed data at its source, which increases the data set size of for training, to build ML models to learn in an equitable way, while preserving data governance and privacy. To ensure that only learnings captured from the edge are shared, and not the data itself, HPE Swarm Learning uses blockchain technology to securely onboard members, dynamically elect a leader, and merge model parameters to provide resilience and security to the swarm network. Additionally, by only sharing the learnings, HPE Swarm Learning allows users to leverage large training datasets, without compromising privacy, and helps remove biases to increase accuracy in models.
“Swarmifying” data to empower AI for the greater good HPE Swarm Learning can help a range of organizations to collaborate and improve insights:
- Hospitals can derive learnings from imaging records, CT and MRI scans, and gene expression data to be shared from one hospital to another to improve diagnostics of diseases and other ailments, while protecting patient information.
- Banking and financial services can fight the expected global loss of more than USD $400 billion in credit card fraud over the next decade by sharing fraud-related learnings with more than one financial institution at a time.
- Manufacturing sites can benefit from predictive maintenance to gain insight into equipment repairing needs and address them before they fail and cause unwanted downtime. By leveraging swarm learning, maintenance managers can gain better insight by collecting learnings from sensor data across multiple manufacturing sites.
Example use cases of early HPE Swarm Learning adopters include:
- University of Aachen studies histopathology to accelerate diagnosis of colon cancer. A team of cancer researchers at University Hospital of RWTH University Aachen in Germany conducted a study to advance diagnosis of colon cancer by applying AI on image processing to predict genetic alterations, which can cause cells to become cancerous. The researchers trained AI models using HPE Swarm Learning on three groups of patients from Ireland, Germany and the U.S. and validated the prediction performance in two independent datasets from the United Kingdom using the same, swarm learning-based AI models. The results demonstrated that the original AI models, training only on local data, were outperformed using swarm learning due to sharing learnings, but not the patient data, with other entities to improve predictions.
- TigerGraph advances anomaly detection to help banks fight credit card fraud. TigerGraph, provider of a leading graph analytics platform, combines HPE Swarm Learning with its data analytics offering running on HPE ProLiant servers using AMD EPYC™ processors to augment efforts in quickly detecting unusual activity in credit card transactions. The combined solution increases accuracy when training machine learning models from vast quantities of financial data from multiple banks and branches, across geological locations.
Availability
HPE Swarm Learning is available now in most countries. For more information, please visit: hpe.com/info/swarm-learning.


Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)