
Adobe’s new data science tool, Segment Comparison for Analysis Workspace, leverages machine learning to help marketers uncover the key characteristics of the audience segments driving KPIs.
Earlier this year, Adobe took the wraps off its new Adobe Marketing Cloud, touting new data science capabilities like Adobe Analytics’ Segment IQ, which uses machine learning to help marketers gain deep insight into audience segments. On Wednesday, Adobe advanced Segment IQ another step with the release of Segment Comparison for Analysis Workspace.
Segment Comparison for Analysis Workspace is the first in what Adobe promises will be a series of audience analysis and discovery tools within Segment IQ. It uses machine learning techniques to perform automated analysis on every metric and dimension to which you have access. Nate Smith, senior product marketing manager, Adobe Analytics, says this allows Segment Comparison to uncover the key characteristics of the audience segments that are driving your company’s KPIs.
“Segmenting is a core strategy that is crucial to any marketer’s success,” Trevor Paulsen, product manager at Adobe, wrote in a blog post Wednesday. “As not all customers have the same characteristics or behave in the same manner, it’s increasingly important to employ different marketing tactics for each distinct group. While traditionally segmenting has been thought about quite simply in regards to age, gender and even geography — as our threshold for data-driven marketing continues to increase, the definition of segmenting has shifted as well.”
Traditionally, audience segmentation has been based on broad segments and simple clustering because sifting through mountains of data can be a nearly insurmountable task for humans, especially at the speed with which marketers need to operate.
“Segments often have overlap with each other,” Smith says. “There are non-obvious differences lurking deep within the data. Finding insights is more and more like picking the needle out of the haystack. We, as humans, just can’t process all the data that’s being collected now.”
Segment Comparison can ease that pain, Smith says, helping brands determine which type of customer buys a small TV vs. a big TV, what type of person visits a brand’s Facebook page vs. its Twitter page, or what type of person watches one show vs. another show.
“It goes through and intelligently discovers the differences though an automated machine learning analysis of metrics and dimensions,” Smith says. “It saves marketers and analysts a ridiculous amount of time.”
Paulsen points to Pixar as a perfect example of what can be done with advanced audience segmentation.
“While one might think that their cartoons are just geared to children, in reality their movies appeal to a variety of different groups, including kids, parents, couples, teenagers,” Paulsen wrote. “The messaging and movie promotion go far beyond just simply getting a five-year-old to laugh. Pixar is smart in their approach: aside from traditional advertisements on children’s programming, the movie is also positioned on shows geared towards adults such as Ellen (as they did withFinding Dory), and promoted on social channels with specific storylines that are geared towards a group.”
By identifying the key characteristics of the audience segments that are most significant to a brand, Paulsen says marketers can better understand the behavior that drives positive interaction, sharing and conversions.
Once Segment Comparison is trained on your data — which takes virtually no time at all for existing Adobe customers because it can access historical data — Smith says brands can use it to complete a comprehensive segment analysis within minutes with just a few mouse clicks, comparing every dimension, metric or data point between any two segments and automatically discovering the most significant differences between them.
“This is going to be probably our fastest-adopted feature once it rolls out and hits the market,” Smith says.
This article was originally published on www.cio.com and can be viewed in full


Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)