
Hadoop is cool, and Spark is fast, but sometimes you need optimized hardware to handle increasingly bigger data workloads. That’s the premise behind Kinetica, an in-memory database that channels the power of massively distributed graphics processing units (GPUs) to promise 100-1,000x better real-time analytics performance.
Such a promise is somewhat dizzying, given the bevy of big data analytics options available today. But it’s also a tad optimistic, given that GPUs are fantastic for workloads dependent on heavily parallelized matrix math, but not necessarily ideal for a wider range of big data applications.
Not yet, anyway.
The rise of GPUs in big data
Kinetica (formerly GPUdb) has been around for several years, winning awardsas it displaces Oracle and other industry heavyweights in significant deployments. First, there was the terrorist tracking database used by the US government to track and kill terrorists. More recently, Kinetica was deployed by the US Postal Service to reduce fraud and streamline operations.
To what effect? Try delivery of more than 150 billion pieces of mail in 2015 while driving 70 million fewer miles, thereby saving seven million gallons of fuel. All this while pulling data from more than 213,000 scanning devices with 15,000+ concurrent users at post offices and processing facilities throughout the US, also combining geospatial data to predict real-time events.This represents, by the way, a 200x performance improvement over the relational database that USPS had been using.
While seemingly diverse, such workloads strike the sweet spot of GPUs, as Todd Mostak wrote: “GPUs excel at tasks requiring large amounts of arithmetically intense calculations, such as visual simulations, hyper-fast database transactions, computer vision and machine learning tasks.”
Figuring out where GPUs fit
The trick, then, is to figure out where to apply GPU-oriented databases, because they’re not equally good for all big data applications.
As Nikita Shamgunov, CTO and co-founder of in-memory database company MemSQL, told me, “There is no question GPUs provide advantages for certain workloads, in particular things like deep learning. GPUs work very well for deep learning because the problem can be broken into many small operations with each small operation executed simultaneously across a large number of cores.”
Adding to this, Jared Rosoff, senior director of engineering at VMware, informed me that “A single GPU is 1000s of cores optimized for matrix math ops. Deep learning is lots of very parallelizable matrix math.” Not surprisingly, then, “deep learning, like computer graphics, depends on lots of parallelizable matrix math that fits perfectly” with GPUs.
Outside of deep learning and things like data visualization, however, the tried-and-true CPU-oriented database is often a better choice, Shamgunov continues:
For areas outside of deep learning, there are still open debates as to the overall cost/benefit of using GPUs compared to CPUs. Companies like Intel are very efficient at packaging CPU power at a low cost. And the industry infrastructure surrounding CPUs still dwarfs anything similar on the GPU front.
In other words, harnessing CPUs tends to be cheaper with minimal productivity expense, and there is far more industry support for CPUs. Additionally, some aspects of big data simply lend themselves better to the CPU.
“For example, other areas of data processing queries are dominated by joins and shuffles, such as re-partitioning the data across the cluster on a different key,” Shamgunov said. “These operations are extremely efficient on CPUs.”
Rosoff also weighed in on this, saying that “most software can’t take advantage of this degree of parallelism or operate with GPUs’ limited instruction set,” making it a perfect solution for deep learning-type applications, but a poor fit for other workloads.
Over time, of course, we’re likely to see enterprises combine the two approaches, using GPUs where they shine and CPUs everywhere else. It’s also likely that databases will start incorporating more support for GPUs as they become more common.
This article was originally published on www.techrepublic.com and can be viewed in full


Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)