HP Amplify—NVIDIA and HP Inc.—have announced that NVIDIA CUDA-X™ data processing libraries will be integrated with HP AI workstation solutions to turbocharge the data preparation and processing work that forms the foundation of generative AI development.
Built on the NVIDIA CUDA® compute platform, CUDA-X libraries speed data processing for a broad range of data types, including tables, text, images, and video. They include the NVIDIA RAPIDS™ cuDF library, which accelerates the work of the nearly 10 million data scientists using pandas software by up to 110x using an NVIDIA RTX™ 6000 Ada Generation GPU instead of a CPU-only system, without requiring any code changes.
HP Amplify Enhances Z by HP AI Studio
RAPIDS cuDF and other NVIDIA software will be available as part of Z by HP AI Studio on HP AI workstations to provide a full-stack development solution that speeds data science workflows.
“Pandas is the essential tool of millions of data scientists processing and preparing data for generative AI,” said Jensen Huang, founder and CEO at NVIDIA. “Accelerating pandas with zero code changes will be a massive step forward. Data scientists can process data in minutes rather than hours, and wrangle orders of magnitude more data to train generative AI models.”
“Data science provides the foundation for AI, and developers need fast access to software and systems to power this critical work,” said Enrique Lores, president and CEO of HP Inc., which forms part of HP Amplify “With the integration of NVIDIA AI software and accelerated GPU compute, HP AI workstations provide a powerful solution for our customers.”
NVIDIA CUDA-X Speeds Data Science on HP Workstation Solutions
Pandas provides a powerful data structure, called DataFrames, which lets developers easily manipulate, clean, and analyse tabular data.
The NVIDIA RAPIDS cuDF library accelerates pandas so that it can run on GPUs with zero code changes, rather than relying on CPUs, which can slow workloads as data size grows. RAPIDS cuDF is compatible with third-party libraries and unifies GPU and CPU workflows so data scientists can develop, test, and run models in production seamlessly.
As datasets continue to grow, RTX 6000 Ada Generation GPUs provide 48GB of memory per GPU to process large data science and AI workloads on Z by HP workstations. With up to four RTX 6000 GPUs, the HP Z8 Fury is one of the world’s most powerful workstations for AI creation. The close collaboration between HP and NVIDIA allows data scientists to streamline development by working on local systems to process even large generative AI workloads.
Availability
NVIDIA RAPIDS cuDF for accelerated pandas with zero code changes is expected to be available on HP AI workstations and PCs with NVIDIA RTX and GeForce RTX GPUs this month and on HP AI Studio later this year.
Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)