
Internet mayhem broke out last month when the Wall Street Journalpublished a report on how employers are using outside firms to predict health risks in their employees. Journalists and employees alike expressed their concerns about the sensitive health information employers might have access to and how they’re using it.
Would employers use data about their workers’ health habits to predict who would become sick or pregnant or develop serious health conditions? And would they then use this information to terminate these employees, to cut down on healthcare costs?
This debate will continue to be heated. But HR analytics — used respectfully, with a partner you trust — are important and can be helpful in guiding talent management and hiring decisions. What’s more, analytics isn’t going anywhere any time soon. According to a 2015 report by Deloitte, 35 percent of companies surveyed said they were actively developing data-analysis capabilities for HR.
From the big-picture perspective, of course, employers are in an awkward position: Should they use HR analytics? And if they do, how can they use this data in a way that doesn’t upset employees or violate privacy and HR laws?
Here are a few types of data to carefully manage when you’re conducting HR analytics, as well as some best practices for staying compliant with the law and honest with employees:
1. Health data
With the focus on healthcare costs and wellness programs, many employers are now using HR analytics to evaluate their programs’ effectiveness, determine gaps in healthcare coverage or employee benefits and help improve programs overall.
Using employee and company data in conjunction with industry data can help you find the best benefit offerings and get employees great, affordable care; but employers need to be very conscious of and sensitive to employee privacy at the same time.
The biggest issue is a potential violation of HIPPA or other employee privacy law. Here, employees need to opt-in, to have their data collected and used. Then, there must be enough data generated by enough employees that employers can’t pinpoint which data belongs to which employee.
When the data is analyzed, that process should be done in a way that looks at the organization as a whole, rather than individual employees and subgroups.
When employers focus on characteristics like health conditions, age, pregnancy and other specific topics, they can run into trouble. By looking at employees with certain characteristics, employers put themselves at risk for discrimination lawsuits.
Although the data may be used with the best of intentions, employees may question what the information is really being used for and whether employers are acting unethically. For example, they may think that the company is using the data to eliminate employees who incur larger healthcare costs.
The messsage: Always be open and honest with employees about how health data will be used, and analyze organizational health holistically. Work with a trusted partner to analyze the data, maintain employee privacy and fuel better benefits decisions.
2.Predictive-performance analytics
The draw of HR analytics is that it can be used to make smarter decisions in talent management. Following that mindest, more employers are adopting predictive analytics to assess future hiring needs and build a strong pipeline of talent.
Specifically, predictive performance analytics use internal data to help assess potential employee turnover. But the same data can be used to influence firing and promotion decisions — and that’s a problem.
For example, the people-analytics team at Google actually developed a formula to make promotion decisions and found it 90 percent accurate in pointing the company toward the right decisions. But the formula was never used. Why? Analytics can give HR the information needed to make better decisions but shouldn’t replace the decisions people make with algorithms.
When employers use predictive models to decide not to train people who, for instance, are on the verge of being either fired or awarded promotions, they’re basing their decisions on what an algorithm says may or may not happen, rather than what employees are actually doing. People are unpredictable, and unknown factors can influence outcomes. Decisions that affect people should be informed by data, but made by people.
Although predictive performance analytics seems like a proactive step to weed out employees who will eventually be assessed as delivering a poor performance, it’s a recipe for a wrongful termination suit — not to mention an action that’s unfair to employees.
Here’s another example from Google: Back in 2011, its people-analytics team used data to determine the qualities of the best and worst managers. But the team didn’t use the resulting insights to actually get rid of managers displaying those “worst” traits. Instead, the insights were used to improve performance.
The message: Be clear about which data from internal sources will be used for what purposes; and use it to help improve management and performance, not to weed out the weakest link.
Analyzing irrelevant information
When employers look at HR analytics, they may get lost in the small details and focus on the wrong things. For example, analytics may show HR that the closer, geographically, that employees live to the office, the less likely they are to leave than those who live farther away.
But does that mean the company should pass up on top talent just because those peoplle live more than a half hour from the office? Probably not.
Using specific data in this way is legal, but is it ethical? Can people be fairly evaluated on actions they haven’t yet done, but data predicts they may do? Will using data in this way lead to the best decisions for the business?
The message: When analyzing data, look at the big picture rather than zeroing-in on small minutiae — such as the fact that one employee took more days off than another, for example. Always focus on making the best decisions for employees and the business as whole.
Overall, remember that numbers are just numbers. HR analytics can help guide decisions, but not make them. Use analytics carefully to avoid legal issues and mistrust from employees, and use them in conjunction with employee feedback, to make the best decisions possible.
This article was originally published entrepreneur.com and can be viewed in full here


Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)