MLCommons has published the results of the industry standard MLPerf training v3.1 benchmark for training artificial intelligence (AI) models, with Intel submitting results for Intel® Gaudi®2 accelerators and 4th Gen Intel® Xeon™ Scalable processors with Intel® Advanced Matrix Extensions (Intel® AMX). Intel Gaudi2 demonstrated a significant 2x performance leap, with the implementation of the FP8 data type on the v3.1 training GPT-3 benchmark. The benchmark submissions reinforced Intel’s commitment to bring AI everywhere with competitive AI solutions.
“We continue to innovate with our AI portfolio and raise the bar with our MLPerf performance results in consecutive MLCommons AI benchmarks. Intel Gaudi and 4th Gen Xeon processors deliver a significant price-performance benefit for customers and are ready to deploy today. Our breadth of AI hardware and software configuration offers customers comprehensive solutions and choice tailored for their AI workloads,” said Sandra Rivera, Intel Executive Vice President and General Manager of the Data Center and AI Group
Why It Matters
The newest MLCommons MLPerf results build on Intel’s strong AI performance over previous MLPerf training results from June. The Intel Xeon processor remains the only CPU reporting MLPerf results, and Intel Gaudi2 is one of only three accelerator solutions upon which results are based, only two of which are commercially available.
Intel Gaudi2 and 4th Gen Xeon processors demonstrate compelling AI training performance in a variety of hardware configurations to address the increasingly broad array of customer AI compute requirements.
About the Intel Gaudi2 Results
Gaudi2 continues to be the only viable alternative to NVIDIA’s H100 for AI compute needs, delivering significant price-performance. MLPerf results for Gaudi2 displayed the AI accelerator’s increasing training performance:
- Gaudi2 demonstrated a 2x performance leap with the implementation of the FP8 data type on the v3.1 training GPT-3 benchmark, reducing time-to-train by more than half compared to the June MLPerf benchmark, completing the training in 153.58 minutes on 384 Intel Gaudi2 accelerators. The Gaudi2 accelerator supports FP8 in both E5M2 and E4M3 formats, with the option of delayed scaling when necessary.
- Intel Gaudi2 demonstrated training on the Stable Diffusion multi-modal model with 64 accelerators in 20.2 minutes, using BF16. In future MLPerf training benchmarks, Stable Diffusion performance will be submitted on the FP8 data type.
- On eight Intel Gaudi2 accelerators, benchmark results were 13.27 and 15.92 minutes for BERT and ResNet-50, respectively, using BF16.
About the 4th Gen Xeon Results
Intel remains the only CPU vendor to submit MLPerf results. The MLPerf results for 4th Gen Xeon highlighted its strong performance:
- Intel submitted results for RESNet50, RetinaNet, BERT and DLRM dcnv2. The 4th Gen Intel Xeon scalable processors’ results for ResNet50, RetinaNet and BERT were similar to the strong out-of-box performance results submitted for the June 2023 MLPerf benchmark.
- DLRM dcnv2 is a new model from June’s submission, with the CPU demonstrating a time-to-train submission of 227 minutes using only four nodes.
The 4th Gen Xeon processor performance demonstrates that many enterprise organisations can economically and sustainably train small- to mid-sized deep learning models on their existing enterprise IT infrastructure with general-purpose CPUs, especially for use cases in which training is an intermittent workload.
What’s Next
With software updates and optimisations, Intel anticipates more advances in AI performance results in forthcoming MLPerf benchmarks. Intel’s AI products provide customers with more choice for AI solutions to meet dynamic requirements requiring performance, efficiency, and usability.
Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)