Keysight Technologies, Inc., a leading technology company that delivers advanced design and validation solutions to help accelerate innovation to connect and secure the world, and Nokia Bell Labs have successfully tested a 260 GBaud ultra-high-speed optical signal transmission over 100 km of standard single-mode fiber (SSMF) at the European Conference on Optical Communication (ECOC) 2022 in Basel, Switzerland, exceeding the previous record of 220 GBaud.
Artificial intelligence (AI), 5G and internet of things (IoT) applications are driving the demand for more bandwidth. Leveraging high symbol rate systems increases the aggregate per-wavelength information rate to reduce the cost-per-bit in optical systems. A key trend in the telecom industry is the transition to higher symbol rates through integrated optics which reduces the component count, cost and power consumption.
With the mutual goal of improving network performance and efficiency, Nokia Bell Labs and Keysight combined expertise with other research partners to create the record-breaking demonstration of 260 GBaud Dual Polarisation Quadrature Phase Shift Keying (DP-QPSK) coherent transmission over 100 km single mode Fibre.
Keysight Technologies Solution
The demonstration consisted of Keysight’s new 260 GSa/s arbitrary waveform generator (AWG) (M8199B), which delivers more than 75 GHz bandwidth and a thin-film lithium niobate I/Q modulator with 110 GHz bandwidth. This enables R&D of transmission systems operated with symbol rates up to 260 GBaud and achieving net bitrates greater than 2 Tbit/s in coherent optical communications.
“Keysight is honored to work with Nokia Bell Labs on achieving 260 GBaud,” said Dr Joachim Peerlings, Vice President of Network and Data Centre Solutions at Keysight. “The continued proliferation of AI requires new levels of server and network performance that must scale computing resources within reasonable energy bounds. Higher data rates and new modulation formats will be among the enabling technologies for the industry.”
“We achieved this outstanding record of maximum symbol rate of 260 GBaud by leveraging enabling technologies and the expertise of several partners,” said Haïk Mardoyan, Senior Research Scientist at Nokia Bell Labs. “This result is a first milestone to scale long haul data transport systems beyond 2 Tbit/s per wavelength. Improving the energy efficiency of transponders is a permanent challenge for the industry.”
Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)