
Xero Reaches Milestone in AI Strategy Incorporating
Xero, the global small business platform, recently announced a significant milestone in its Artificial Intelligence (AI) strategy with the roll out of new bank reconciliation predictions. The predictions feature brings a new application of AI into the Xero platform, reducing manual data entry and saving businesses time.
The new feature uses Machine Learning (ML) to predict the contact and account code for transactions that cannot be matched to invoices or bills using an organisation’s bank rules, Xero’s matching logic or memorisations. Previously, businesses had to manually enter new contacts or account codes to reconcile these transactions—a time-consuming process that risks manual error.
Bank reconciliation predictions adds to a growing portfolio of Xero’s AI-enabled product features, most recently Analytics Plus, a suite of planning and forecasting tools, powered by AI and designed to help businesses and advisors plan for the future with confidence. Xero also uses two core ML techniques—text classification and entity recognition—to free small business owners and employees from repetitive tasks with automatic form filling in both Hubdoc and Xero Expenses.
Kendra Vant, EGM of Data said: “As we continue to leverage AI to build rich customer experiences, we’ll streamline more and more critical business tasks and processes for our customers, whether it’s reconciling transactions, filing expenses or forecasting for the future”.
Harnessing AI forms part of Xero’s global data strategy, building on the data flowing through the small business platform to create new capabilities that improve the Xero experience for businesses and advisors, save them time and deliver insights to help them plan for the future.
Bank reconciliation is one of Xero’s most used features, with more than 1.7 billion transactions reconciled in the Xero platform over the past 12 months. The ML algorithms for bank reconciliation predictions learn from millions of these historical reconciliations across different organisations. As the algorithms improve over time, businesses can complete bank reconciliation faster, with more accurate information and reduced manual data entry.
“While each small business is unique, there are many patterns we can learn from the reconciliation activity of our millions of subscribers globally. This scale and reach allows us to tap into the ‘wisdom of the crowd’ and reduce toil for small business owners, while maintaining the security and assurance they expect from our platform”, Vant said.
“With these new bank reconciliation predictions, we can suggest to a user that money spent at an office supply store is likely to belong in Office Expenses, even if it is the first time you’ve shopped at that store”, Vant added. “This may seem inconsequential, but any time spent on manual data entry is time not spent on the business. By streamlining a core task like reconciling bank statements, we’re able to reduce stress and give business owners more time in their day, while making sure their data is accurate and up to date so they can plan with confidence with their advisors”.
The data team at Xero has expanded in the past two years and now operates from Australia, New Zealand and Canada. Xero’s team of data scientists and engineers work to integrate different AI applications across the Xero product suite, giving them opportunities to contribute to Xero’s growing portfolio of ML products operating at scale.
The new bank reconciliations predictions feature will roll out in phases to all customers. As Xero continues to improve these algorithms, users will see Account and Contact predictions in bank reconciliation more frequently.


Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)