
Jonathan Wilkins, marketing director at EU Automation, looks at how graph technology and machine learning can be used to make sense of big data in the manufacturing industry
The theory of six degrees of separation, first proposed in 1929, suggested that every individual in the world was connected to anyone else in no more than five links.
Today, social networking tools and graph technology can accurately map and extract valuable insights from the relationships between various entities in a network.
Networks can also be analysed by machine learning, a technique in which a computer can adapt its own algorithms.
Modern manufacturing equipment has been advancing rapidly; plants are filled with sensors to monitor equipment performance. The number of sensors that allow devices to connect to the internet is growing and so too is the volume and complexity of data available to plant managers. The collection, storage and analysis of this data is vital in unlocking the benefits big data can provide.
Graph databases
Traditionally, data has been stored in table-structured relational databases, but development in this field has led to the introduction of the next generation of relational databases, graph databases, a type of NoSQL database. In a graph database, information is stored and represented with nodes, edges and properties. Nodes represent individual entities, edges are lines that connect nodes to each other and properties represent information relevant to the nodes. Unlike relational databases, which form a square structure, graph databases are much more flexible.
In a graph database, information is stored and represented with nodes, edges and properties. Nodes represent individual entities, edges are lines that connect nodes to each other and properties represent information relevant to the nodes. Unlike relational databases, which form a square structure, graph databases are much more flexible.
Graph databases can be used to quickly access information and identify trends in large data sets, such as supply chain patterns, logistics and new business leads. The system is naturally adaptive, allowing new nodes to be easily added. The analysis can be done in real time to address problems in manufacturing.
Machine learning
Machine learning is a concept that has been around for many decades. In machine learning the computer doesn’t rely on rule-based programming, rather the algorithms can adapt and learn from the data. This means that manufacturers using this software don’t need to rely on the time and expense of dedicated data analysts to find patterns and make predictions.
Companies like Amazon have also used cloud based machine learning to make warehouse logistics more efficient by being able to quickly and seamlessly adapt to changes in inventory demand at peak times and during seasonal highs and lows.
Machine learning can incorporate hundreds of causes, effects and non linear responses. This model can adapt itself over time to continually improve the quality of predictions. Machine learning can be combined with graph databases to gain valuable insights into processes.
Whether it’s condition monitoring or predictive maintenance of a process plant, demand forecasting in automotive manufacturing or digital twinning — a type of virtualisation — machine learning facilitates better decision making in an increasingly complex business environment.
Machine learning is commonly used for predictive analytics, which can give insight not only into customer intentions, but also into the state of machines on the factory floor. Information analysed from the sensors can relay any potential suboptimal performance that may lead to unplanned down time if left unaddressed.
This leaves plant managers time to order replacement parts, such as an obsolete or refurbished part from EU Automation, or perform other necessary maintenance to prevent system failure.
Machine learning is particularly useful in largely automated systems, where equipment is required to make its own decisions. The continuous learning process makes data more reliable, analysis techniques more repeatable and ultimately improves the human input into any system. Aside from predictive analytics it can also be applied to optical part sorting, failure detection, analysis and product testing.
Although machine learning and graph technology both offer a powerful way of analysing the ever increasing volume of data available to us, much of the technological potential is yet to be realised.
To gain the most valuable insights, it’s important that business leaders embrace a thoroughly modern form of analysis. In doing so, it may come as less of a surprise that competitive advantage is less than a mere six degrees of separation away.
This article was originally published on roboticsandautomationnews.com can be viewed in full


Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)