MapR® Technologies, Inc., the industry’s leading data platform for AI and Analytics, six new data science service offerings to help customers gain immediate value from Machine Learning (ML) and Artificial Intelligence (AI) and expand their competitive edge over competitors, no matter where the customer is in their data science journey.
Because AI and ML can be complex, organizations don’t always have the capacity to execute on AI and ML ideas. Those that do, may not be able to bring those ideas to production. According to McKinsey Global Institute, early adopters of ML have a 3 to 15% profit advantage across sectors. Many say they achieve revenue increases by using AI in core processes. Some organizations may lack the internal knowledge and expertise, but this should not hold them back entirely.
“The MapR Data Science team has helped dozens of organizations get to the next stage in their AI journey,” said Joe Blue, director data science, MapR Technologies. “We’ve learned that there is no one-size fits all approach that will work for every organization. When we engage with organizations, we learn where they are in their AI maturity level and what their objectives are to come up with a customized plan to get them to the next level.”
Details of New MapR Data Science Lifecycle Offerings:
- AI/ML Hack-a-thon. In this offering, the MapR Data Science team works with the organization to identify a business use case and rapidly prototype a solution. This offering is targeted toward AI and ML contemplators, and is meant to be a short, hands-on session that delivers a real ML and AI solution that the organization will continue to improve and maintain over time.
- Data Science Refinery Accelerator. MapR’s Data Science Refinery unlocks container and ML technologies and, with this engagement, an expert will guide customers through installation, best practices, and baseline models to ensure maximum production success. For a limited time, a one-week engagement is included when purchasing the MapR Data Platform, a $15k value.
- Cybersecurity Advanced Protection. Network security vendors are usually effective at spotting known patterns, but there are often “unknown” gaps that could allow evolving hackers to gain entry or inflict damage. The MapR cybersecurity data science offering orchestrates a real-time pipeline of logs (e.g. application logs, transaction logs, etc.) and trains models based on the unique signature of network sources and traffic. Ultimately, the organization receives a visual, UI-based assessment showing suspicious activity, allowing internal security experts to review and escalate threats in real-time.
- ML Deployment. Building ML solutions to solve business problems doesn’t actually address that problem until the model can make real decisions. The issue is that many environments have limitations in using data and scaling decisions. Intended for organizations that are further along in their ML / AI journey, the model deployment offering maximizes a model’s value by uploading the modeling process to the MapR Data Platform. The solution is then poised to take advantage of all the organization’s data, utilize every ML library, and deliver results that will scale and improve with the business.
- AI Enablement. With this offering, the data science team combines the MapR ML framework with Streaming events to deploy an AI engine that will begin to find new opportunities for optimization through a continuous learning and feedback loop. The team uses Machine Learning to bring order to the chaotic nature of a system’s behavior (e.g., a person, a car, a pipeline, etc.), then apply reinforcement learning to teach the system to adapt to identify and assess unusual cases to achieve generalization.
- ML Model Maintenance. ML models degrade over time. In many cases, the arrival of performance results lags behind the next model deployment. Designed for mature ML processes, this offering enables organizations to monitor their ML workflows for events that might impact their accuracy in lieu of performance data. Having detected those impacts, the business will be able to make more informed decisions, such as when the current model should be replaced.
“Production success with AI and ML depends on deploying and then evaluating models over time,” explained Ted Dunning, chief applications architect, MapR Technologies. “The ML Model Maintenance offering streams diagnostics and makes it easier to offers better model evaluation, and improves the ability to respond, increasing the agility and effectiveness of an organization’s ML and AI deployment.”
Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)