Written By: Genie Yuan, Regional Vice President, APAC Japan, Couchbase
Imagine a consumer who is renovating his house and is browsing an e-commerce platform for materials. With predictive analytics capabilities, the platform’s mobile app can tap the user’s browsing and purchase history to suggest products they are likely to buy. But with generative AI (Artificial Intelligence), the app comes up with a complete architectural plan for a room, lists down all the needed items, and identifies which are available in the platform’s inventory.
Customer service is just one of the many ways generative AI can potentially transform how companies do business. With smartphones serving as the primary interface with which individuals interact with applications, it is more than likely that enterprises will race to integrate this new technology into their own apps or launch new ones that contain generative AI capabilities.
For example, Singapore has over nine million mobile phone subscriptions or 1.7 subscriptions per person. Between two companies releasing their versions of a novel generative AI-powered app, it is the one with the mobile app that can reach a larger audience and possibly have a bigger impact on its users.
But to unlock the full potential of generative AI apps, enterprises must overcome several barriers concerning limitations of mobile devices, issues with cloud servers, data privacy and security challenges, as well as ensuring data integrity.
Generative AI on the Edge
A barrier to generative AI-powered mobile apps is that mobile devices still fall short in terms of the computational capabilities required by Large Language Models (LLMs). Cloud servers do not fully address this either because they are best suited for handling computationally intensive tasks such as training deep learning models and LLMs.
In addition, AI systems that are dependent on sending data to a centralised server are unable to deliver instantaneous responsiveness. Latency leads to delays that undermine the timeliness of AI-generated insights, while also incurring significant bandwidth expenses due to continuous data transfer.
The key to maximising the potential of mobile and edge AI is to adopt a strategic methodology towards model architecture, effective data management, and leveraging the inherent computing resources of the device. This includes moving the processing of tasks that demand real-time interaction between AI systems and users, as well as other machine learning operations, to the device level.
By moving it closer to the network’s edge, overall performance is improved while enhancing user privacy through the reduction of the amount of data transmitted.
Better Performance with Less Computing Load
Reducing the device’s workload when using AI is another way to improve performance. For example, model quantisation is a process similar to how we compress large files such as music and videos so they can be attached to an email. This is done by rounding numbers in the data being used by AI, reducing the consumed storage space within the model itself.
A similar technique, GPTQ, also simplifies the data in an AI model but after training. This can be compared to a verbose classical novel that is rewritten with simpler language, resulting in fewer pages being used but retaining the original’s general themes and ideas.
Another process, LoRA, looks for patterns and connections within the training data to help improve the AI model’s predictions. By enabling the model to focus on the parts of its datasets that are relevant to predictions, the AI model makes better predictions while using fewer resources.
Improving Data Privacy, Security, and Synchronisation
Other factors that businesses should take into account when deploying mobile AI include the safeguarding of data privacy and security, as well as ensuring the highest levels of data synchronisation. While user privacy and data protection are already improved if processing is moved to the edge, it can be further enhanced through the implementation of robust data encryption and techniques.
Equally as critical to the deployment of mobile AI as data privacy and security is data integrity. Without the latter, edge devices and their AI applications cannot deliver their expected value in the form of valuable insights, analytics, and better decision-making.
One such mechanism for effectively synchronising data between edge devices and centralised servers or the cloud is a cohesive data platform with the ability to handle multiple data formats. By allowing AI models to access and engage local data repositories, whether online or offline, data integrity and consistency are ensured throughout a network. This, in turn, helps AI applications be swift, dependable, and adaptable to diverse settings.
“The key to maximising the potential of mobile and edge AI is to adopt a strategic methodology towards model architecture, effective data management, and leveraging the inherent computing resources of the device. This includes moving the processing of tasks that demand real-time interaction between AI systems and users, as well as other machine learning operations, to the device level.”
Simplicity Is Key
Given the current limitations of smartphone hardware, as well as the inherent challenges of relying on cloud servers, the optimal architecture for mobile AI emphasises simplicity. Streamlining enables more resources to be allocated to AI algorithms, a crucial consideration in mobile settings where resource constraints are prevalent.
With many companies looking to develop their AI-powered tools and solutions, those who make a successful breakthrough in the mobile app front can potentially take the lead over the competition.
Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)