Oracle today announced new artificial intelligence (AI) cloud applications that enable manufacturing organizations to reduce costs and increase yields by providing rapid analysis and actionable insights that can improve production efficiency and performance. The new Oracle Adaptive Intelligent Applications for Manufacturing leverage machine learning and AI to process vast amounts of data from production environments and rapidly identify issues, enabling improved operational efficiency.
Oracle Adaptive Intelligent Applications for Manufacturing enables manufacturers to spot anomalies during production, pinpoint the root cause of issues, and predict events before they occur. The applications enable manufacturers to look into every stage of the production process, foresee faulty processes and elements, and trace the impact of issues from production through to customer delivery.
Built on the robust and scalable Oracle Cloud Platform with embedded machine learning capabilities, this solution includes a manufacturing-aware data lake that brings together and analyzes structured, semi-structured, and unstructured data from multiple data sources on the shop floor.
Oracle Adaptive Intelligent Applications for Manufacturing include:
- Pattern and correlation analysis: Discover key patterns and correlations between a complex set of multi-variate influencing factors across manpower, machine, method, material, and management related information. Users can then align these insights with manufacturing business metrics such as yield, quality, cycle time, cost, scrap, rework, and returns to help quickly identify root causes.
- Genealogy and traceability analysis: Using highly intuitive user interfaces and a self-driven ad-hoc analysis paradigm, the solution sets the foundation for “smart recall” analysis by providing comprehensive capabilities for backward and forward tracing of products and processes to quickly identify impacted products, services, and customers.
- Predictive analysis: Leveraging the foundation of patterns and correlations analysis driven by machine learning and AI algorithms, this solution predicts the likelihood of occurrence of critical outcomes such as yield, defects, scrap, rework, cycle time and costs for ongoing production activities. This provides business users with the lead-time needed to intervene in a timely fashion to minimize losses.
Oracle Adaptive Intelligent Applications for Manufacturing are designed to work in a complex and heterogeneous mix of IT systems such as Manufacturing Execution Systems (MES), Quality Management, Enterprise Resource Planning (ERP), Human Capital Management (HCM), Customer Relationship Management (CRM) and Operational Technology (OT) systems that include sensor and log data from equipment and machines as well as external environmental data such as humidity, temperature etc.
“Traditionally, pattern and correlation analysis and predictive analysis are done by a small group of specialist data scientists,” said Ramchand Raman, Vice President, Oracle Product Development. “Oracle Adaptive Intelligent Applications for Manufacturing dramatically simplify the output of complex machine learning and AI algorithms and present these insights to average business users to drive better, faster decision making.”
Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)