Written By: Nancy Friedrich, Industry Solutions Marketer for Aerospace & Defense, Keysight Technologies
To heighten communications capabilities and improve situational awareness, military and government agencies increasingly leverage commercially developed technologies. Many plan to boost their connectivity capabilities with fifth-generation (5G) non-terrestrial networks (NTNs).
An NTN is a hybrid network applying satellite communication (SATCOM) technology to extend existing 5G technology. 5G NTNs draw many features from 5G terrestrial networks and face many of the same challenges, adding higher reliability expectations for 5G NTN service compared to earlier SATCOM networks.
To help ensure the performance of 5G NTN deployments, virtual simulation, emulation, and digital twin technology use RF system measurement science to deliver results beyond what is possible through physical testing alone.
Despite the hype over the commercial possibilities of 5G NTN, it also promises to transform capabilities for aerospace and defense. Potential 5G NTN use cases for the military and government include coverage for forward battlefields or focused special operations.
NTNs also will provide coverage to restore communications in disaster areas experiencing widespread infrastructure outages. Among transportation use cases, NTNs support logistic in-transit tracking for long-haul trucking routes, rail lines, and maritime shipping lanes.
Five Challenges Facing 5G NTN
More Data, Crowded Spectrum
The hybrid 5G NTN provides obvious advantages as well as challenges. Handheld or vehicle-based user equipment (UE) tends to demand high volumes of data for video and mapping services.
Additionally, sensor applications may connect user equipment with lower data rates. Delivering the required volumes of data means leveraging 5G signalling fundamentals for 5G NTN, including mmWave carrier frequencies and complex modulation in wide bandwidths.
5G spectrum is already tightly allocated in terrestrial networks, and an onslaught of tens of thousands of lower earth orbit (LEO) satellites and geostationary earth orbit (GEO), medium earth orbit (MEO), and high-altitude platform systems (HAPS) platforms soon operating in 5G NTNs will add to the spectrum crowding.
The Space Environment
Space is the foremost challenge for NTNs. Once deployed, equipment is inaccessible. In addition, systems must operate in an extremely harsh environment with extreme temperatures and radiation.
For successful performance, systems also need to provide consistent power generation and storage. For all of these aspects, satellite system providers need to balance risk versus cost across the lifetime of the operation.
Size, Weight, Power, and Cost
Another concern is the physical limits of placing high-frequency RF and computing resources in the sky. Size, weight, power, and cost (SWaP-C) become issues when moving away from the GEO 20 tonners into more compact LEO satellites and HAPS platforms, and payloads must transform accordingly.
On the plus side, placing more satellites into service with smaller payloads and shorter life cycles is now feasible and cost-effective. A 5G NTN might consist of a group of satellites working together in various orbits.
Connecting in Motion
5G NTNs put some things, or perhaps everything in the network, in constant motion. Satellite and HAPS movements factor into connection setup, signal quality, and handovers. gNodeB instances and parts of the RAN flying aloft add to the movement of any UE at the surface.
Parameters previously fixed or confined in a small range in a 5G terrestrial network suddenly become wide-ranging variables in a 5G NTN. Tracking areas, bulk delays, Doppler shifts, signal-to-noise ratios (SNRs), and more elements take on dynamic characteristics.
The Payload Question
The introduction of 5G NTNs disrupts the traditional 5G terrestrial network architecture and opens up a paradigm shift in connectivity. Many alternatives exist for satellites and HAPS participating in gNodeB and RAN domains, some with multiple satellites in the chain scattered across miles of sky.
The choice between transparent or regenerative payloads can completely change how the network organises and the resulting signal routing. With LEO satellites in motion, remember that all timing relationships are dynamic. At stake is the quality of service (QoS) user experience, primarily due to variable delays and complex handovers that can result in dropped connections.
Platform kinematics rapidly alter 5G NTN channel behaviour, and staging fast-moving platforms in the proper orientation long enough to gather detailed physical measurements is not an option. However, simulations can account for complex orbital paths and decompose real-time motion into precise detail with time-correlated analysis.
Advancing the Next 5G NTN Wave
Accurate multi-domain simulation of a 5G NTN link depends on four elements: an authentic representation of complex digital modulation in a 5G waveform with real-world effects, a complete model of satellite kinematics, robust modelling of RF system signal processing, and a time-correlated view of 5G protocol decoding.
The critical goal is validating performance in a simulation before deployment of orbital hardware. Find out how developers embracing 5G NTN model-based engineering approaches get their systems off the ground faster with less risk by reading the Keysight white paper, “RF System Measurement Science Launches 5G NTNs.”
Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)