Authored by: Derek Li, Principal Architect at Red Hat
The 5G mobile network is the latest global wireless standard developed by 3GPP. While 4G networks provide connectivity to most current cell phones, 5G can enable connectivity for an expanded set of devices, from machines to vehicles. In this article, we will share some advantages of 5G, provide an overview of edge computing and look at some potential use cases.
What challenges can 5G address?
5G has been designed to meet many challenging requirements, including:
- Significantly higher throughput (up to 20 Gbps peak data rates based on International Mobile Telecommunications-2020 (IMT-2020) requirements) in mobile broadband, such as 4K videos streaming or virtual reality (VR).
- Ultra-low latency (less than 1 millisecond) for real-time communications, such as surveillance drone manoeuvring.
- Massive network capacity, with plans to exceed the number of connected devices per unit area by over 100x compared with 4G/LTE technologies.
- A more uniform user experience and more users, i.e. higher reliability in crowded areas such as stadium and sports events.
- Improved energy efficiency, including reducing power consumption and the delivery of cellular Internet of Things (IoT) devices that can last for more than 10 years.
- The new 5G core network follows a Service-Based Architecture (SBA), which allows for the adoption of cloud-native technologies and open-source software into telecom networks and brings in more collaboration, innovation, and openness.
Figure 1: Use cases for 5G
What is edge computing?
It is hard to get the full picture of 5G without understanding edge computing. Edge computing is computing that takes place at or near the physical location of either the user or the source of the data, which results in lower latency and saves bandwidth.
Effectively, edge computing is a concept that enables services to be hosted close to the service consumers (e.g., subscribers, machines, and devices). Being closer provides benefits, including significantly reducing end-to-end latency, decreasing load and saving cost on the backhaul transport network and enhancing data privacy (i.e., private 5G use case). The edge computing paradigm is the only way to realise the latest 5G URLLC use case, and it also addresses many challenging mobile network issues in 5G technologies.
The Emerging Edge Computing Use Cases of 5G
Edge computing is the key to achieving the promise of many new 5G use cases, including virtual and augmented reality (VR/AR), IoT, Industrial IoT, autonomous cars and drones, real-time multiplayer gaming, and recently, the deployment of open Radio Access Network (open RAN) which is possibly the first prevailing edge computing use case in 5G mobile network. Some recent references can be found in these releases from Red Hat:
Figure 2. Sample open RAN architecture
Low Latency Applications and Edge Cloud Platform
For the incoming low latency and real-time use cases, such as VR/AR, autonomous and connected vehicles, drone control, telesurgery and medical robotic instruments, and real-time multiplayer online gaming, the edge computing paradigm is the most effective way to ensure the low latency and also minimise the backhaul bandwidth and cost.
As mobile operators cannot build all the use cases themselves, they will need to attract partners and developers to build an optimised ecosystem on top of their edge cloud. Independent software vendors (ISV) and enterprise developers demand a platform that can help abstract the network complexity, including making use of the mobile network capabilities (e.g., user location, SIM-based authentication, prepaid/postpaid payment mechanism, etc.) in a more secure way.
Without the edge cloud platform, mobile operators will fall back to the “dumb pipe” utility model and continue suffering from the declined average cellular data price (e.g., about 10% year-over-year declination for the estimated average price of cellular data per gigabyte from 2018 to 2023 in US). Figure 2 describes the potential roles that a telco operator can play from the Edge Cloud value chain perspective, such as Infrastructure Provider, Edge Service Provider or overall Service Provider.
Figure 3: Roles operators can play in the edge cloud value chain
To meet the needs of various edge computing scenarios, an edge computing solution should support hybrid workloads of virtual machines (VMs), containers, bare-metal nodes running network functions, and Artificial Intelligence and Machine Learning (AI/ML) workloads in microservices architectures. This solution needs to have operational simplicity by automating bare-metal provisioning, application onboarding, tenants and workload isolation, software-defined networking and storage, as well as management and orchestration.
Red Hat considers edge cloud and computing as an integral part of its open hybrid cloud strategy, and works to provide a consistent experience for everyone from the application developer to the infrastructure operations team. This consistency should be end-to-end, from edge devices, networks, up to the centralised data centre to maximise potential. Hybrid cloud strategy and approach provide sanity to what would otherwise be chaos across a technology ecosystem.
Outlook on the future of edge computing
Although 5G is relatively new, edge computing may play a significant role in the 5G ecosystem. Edge computing and processing will be used to cache, analyse, and filter local content. The edge cloud can also act as an intermediary, and forward data only when needed to the core network so it can optimise the backhaul bandwidth requirement.
This decentralised approach improves resilience, provides real-time interaction, enables local content and privacy, and delivers a superior user experience. It also enables mobile operators to support more use cases and reach customers faster. Finally, it leads to differentiation and the creation of new revenue streams for mobile operators.
As 5G is still quickly evolving, it is difficult to foresee all possible developments and requirements.
Due to this, it is nearly impossible to have a single vendor that can provide a complete edge computing solution. Instead, an evolving edge computing solution will most likely be formed from multiple components by multiple vendors.
That is exactly what open source is here for. When choosing open source solutions, edge technologies work across a wide ecosystem and communities–as there is no proprietary technology stack–and removes vendor lock-in.
The future of edge computing platforms has to be innovative, hybrid, and open, and working open source communities may power the next era of edge cloud computing technology.
Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)