Elastic, the Search AI Company, has announced Search AI Lake, a first-of-its-kind, cloud-native architecture optimized for real-time, low-latency applications including search, retrieval augmented generation (RAG), observability, and security. The Search AI Lake also powers the new Elastic Cloud Serverless offering, which removes operational overhead to automatically scale and manage workloads.
With the expansive storage capacity of a data lake and the powerful search and AI relevance capabilities of Elasticsearch, Search AI Lake delivers low-latency query performance without sacrificing scalability, relevance, or affordability.
The Benefits of Search AI Lake
Search AI Lake benefits include:
- Boundless scale, decoupled compute, and storage. Fully decoupling storage and compute enables effortless scalability and reliability using object storage, dynamic caching that supports high throughput, frequent updates, and interactive querying of large data volumes. This eliminates the need for replicating indexing operations across multiple servers, cutting indexing costs and reducing data duplication.
- Real-time, low latency. Multiple enhancements maintain excellent query performance even when the data is safely persisted on object stores. This includes the introduction of smart caching and segment-level query parallelisation to reduce latency by enabling faster data retrieval and allowing more requests to be processed quickly.
- Independently scale indexing and querying. By separating indexing and search at a low level, the platform can independently and automatically scale to meet the needs of a wide range of workloads.
- GAI optimised native inference and vector search. Users can leverage a native suite of powerful AI relevance, retrieval, and reranking capabilities, including a native vector database fully integrated into Lucene, open inference APIs, semantic search, and first- and third-party transformer models, which work seamlessly with the array of search functionalities.
- Powerful query and analytics. Elasticsearch’s powerful query language, ES|QL, is built in to transform, enrich, and simplify investigations with fast concurrent processing irrespective of data source and structure. Full support for precise and efficient full-text search and time series analytics to identify patterns in geospatial analysis are also included.
- Native machine learning. Users can build, deploy, and optimise machine learning directly on all data for superior predictions. For security analysts, prebuilt threat detection rules can easily run across historical information, even years back. Similarly, unsupervised models perform near-real-time anomaly detections retrospectively on data spanning much longer periods than other SIEM platforms.
- Truly distributed—cross-region, cloud, or hybrid. Query data in the region or data center where it was generated from one interface. Cross-cluster search (CCS) avoids the requirement to centralize or synchronise. It means within seconds of being ingested, any data format is normalized, indexed, and optimised to allow for extremely fast querying and analytics. All while reducing data transfer and storage costs.
Harnessing Innovation with Search AI Lake
Search AI Lake powers a new Elastic Cloud Serverless offering that harnesses the innovative architecture’s speed and scale to remove operational overhead so users can quickly and seamlessly start and scale workloads. All operations, from monitoring and backup to configuration and sizing, are managed by Elastic. Users just bring their data and choose Elasticsearch, Elastic Observability, or Elastic Security on Serverless.
“To meet the requirements of more AI and real-time workloads, it’s clear a new architecture is needed that can handle compute and storage at enterprise speed and scale—not one or the other,” said Ken Exner, Chief Product Officer at Elastic. “Search AI Lake pours cold water on traditional data lakes that have tried to fill this need but are simply incapable of handling real-time applications. This new architecture and the serverless projects it powers are precisely what’s needed for the search, observability, and security workloads of tomorrow.”
Search AI Lake and Elastic Cloud Serverless are currently available in tech preview. For more information on how to get started, read the Elastic blog.
Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)