The Scalance MUM856-1 – the first industrial 5G router from Siemens – is available now. The device connects local industrial applications to public 5G, 4G (LTE), and 3G (UMTS) mobile wireless networks. The router can be used to remotely monitor and service plants, machines, control elements, and other industrial devices via a public 5G network – flexibly and with high data rates. Demand for this type of solution is growing in the industry. In addition, the device can be integrated into private 5G networks. The Scalance MUM856-1, therefore, supports future-oriented applications such as mobile robots in manufacturing, autonomous vehicles in logistics or augmented reality applications for service technicians. Thanks to a robust IP65 housing, the router can also be used outside the control cabinet, for example under harsh conditions in production or in outdoor facilities in the water industry.
To ensure the powerful connection of Ethernet-based subnetworks and automation devices, the Scalance MUM856-1 supports Release 15 of the 5G standard. The device offers high bandwidths of up to 1000 Mbps for the downlink and up to 500 Mbps for the uplink – providing high data rates for data-intensive applications such as the remote implementation of firmware updates. Thanks to IPv6 support, the devices can also be implemented in modern communication networks. Various security functions are included in order to monitor data traffic and protect against unauthorized access: for example, an integrated firewall as well as authentication of communication devices and encryption of data transmission via VPN. If there is no available 5G network, the device switches automatically to 4G or 3G networks. The first release version of the router has an EU radio license; other versions with different licenses are in preparation. With the Sinema Remote Connect management platform for VPN connections, users can access remote plants or machines easily and securely – even if they are integrated in other networks. The software also offers easy management and autoconfiguration of the devices.
Successful use of prototypes for private 5G networks
Besides connectivity to public networks, Scalance MUM856-1 also supports integration into private local 5G campus networks. Siemens is testing this use case in their own Automotive Showroom and Test Center in a prototype of a standalone 5G test network, which is based on Siemens components. The 5G infrastructure used here comprises a 5G core, a distributed unit, and several radio units. Siemens has also built another prototype of a private 5G infrastructure in its plant in Amberg, and their Karlsruhe plant will be equipped soon. In these systems, Siemens is relying exclusively on its own independently developed products and solutions. In addition, Siemens is currently implementing private network technology for a 5G campus network with a focus on industrial use in one of the Deutsche Messe AG exhibition halls in Hanover. This private 5G network will be ready for use in early September. The network can be used by exhibitors during trade shows and, outside of trade show times, can be used by companies for tests and field trials.
Background info:
In industry, in addition to the need for local wireless connectivity, there is increasing demand for remote access to machines and plants. In these cases, communication is usually over long distances. Public mobile networks can be used to access devices that are located at a considerable distance, for example in other countries.
In addition, service technicians can connect to the machines they need to service via the mobile network while on the go. Public 5G networks are therefore an important element of remote access and remote servicing solutions. They can be used, for example, to provide users with very high bandwidths in urban areas with small radio cells and high frequencies. In rural areas, radio cells have to cover a large area, which is why lower frequencies are used. Particularly at the edges of radio cells, for example for LTE or UMTS, there are often significant losses in terms of both the bandwidth and stability of the communication connection. And it is exactly in these remote areas where stable bandwidth transmission is required for remote servicing or video transmission, for example for water stations. With innovative 5G communications technologies, considerably more bandwidth with greater reliability is available at the edges of radio cells and the average data rate for users within a radio cell increases. The router was launched last November at SPS 2020.
Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)