Authored By: Adi Pendyala, Senior Director, and Lawrence Ng, Vice President of Sales, Asia Pacific and Japan – Aspen Technology
“Innovation distinguishes between a leader and a follower”, the iconic Steve Jobs once said.
In 2019, Accenture conducted a global survey with 1,500 C-level executives across 16 industries titled “Scaling to new heights of competitiveness”. Majority of top managers strongly agree that leveraging Artificial Intelligence (AI) is necessary to achieve their growth objectives, while acknowledging that scaling AI at the enterprise level is a real challenge. Scaling AI means that diverse teams, departments and individuals across the enterprise realise the value of AI and utilise it in their work processes to achieve efficiency and business advantages.
The volume and rate of data accumulation, especially for capital-intensive industries, increases exponentially, as more devices become internet-enabled each year. This generates rising demand for data storage and computing resources among organisations. According to Flexera 2021 State of the Cloud Report, the pandemic has accelerated cloud plans and spend. In fact, enterprise cloud spend is significant and growing quickly, compared to previous years, and more organisations are leveraging public cloud services (for example, AWS, Azure, and Google), private ones or both (hybrid model).
The Road to Leadership via Innovation
Despite the accelerating adoption rate of cloud services, many enterprises are still not running their applications in the cloud. Organisations face challenges relating to response latency, data security, data management, cyber regulatory compliance, implementation cost, retaining employee knowledge and inference at the edge.
The first critical decision is how to transfer data and the cost of doing so. Response latency is seen as a constraint or an obstacle for a business that is performing critical operations and trying to run its assets efficiently and effectively. For any business, it is important to consider whether the benefit of achieving lower latencies is greater than the cost of acquiring the necessary network bandwidth, which in some cases is not possible due to infrastructure constraints.
Another challenge is the increased cyberattack surface. More businesses are shifting their confidential information to the Cloud, and data breaches targeting cloud-based infrastructures increased by 50% from 2019 compared to 2018, according to Verizon Business 2020 Data Breach Investigations Report. Moving data out of the plant increases the number of potential cyberattack vectors. Data breaches can be caused by a simple misconfiguration or internal insider threats and can be hard to avoid when part of the IT infrastructure is outsourced to a third-party business. Therefore, ensuring data security in this dynamic environment is crucial for enterprises.
Digital sovereignty, which refers to the level of control over the data, hardware and software that a company relies on to operate, is another challenge facing the enterprise. Operational sovereignty provides customers with assurances that those working for a cloud provider cannot compromise a customer’s workloads. Software sovereignty ensures that the customer can control the availability of its workloads and run them without being dependent on or locked into a single cloud provider. Moreover, data sovereignty provides customers with a mechanism to prevent the cloud provider from accessing their data, designating access only for specific purposes. The real challenge for organisations is trusting those managing their cloud services, especially when sensitive data could circulate in the hands of multiple third-party businesses.
Cyber regulatory compliance has its own complexity: making sure that compliance programs evolve with cloud deployment, infrastructure, environments and applications, and various cloud services and applications are configured securely. Data movement from the plant to the cloud service, especially when it is owned and operated by a third-party business, may violate regulatory compliances. Organisations that have a multi-cloud strategy can benefit from what is called Cloud Security Posture Management (CSPM) as it becomes difficult to ensure that various cloud services and applications are securely configured.
The next concern is around the cost of cloud-centric implementations. According to the International Data Services (IDC) report, the annual public cloud spending will hit USD $500 billion by 2023. There is a growing awareness of the long-term cost implications of the Cloud and several companies are taking the dramatic step of repatriating parts of their workloads or adopting a hybrid approach to alleviate the cloud costs. This shift is driven by an incredibly powerful value proposition—infrastructure available immediately, at exactly the scale needed by the business—driving efficiencies both in operations and economics for enterprises.
A critical challenge is to retain experienced employees’ knowledge, as a key strategic resource, before they retire or after a merger or acquisition occurs. One of the solutions is to automate workflows and processes at the edge. Utilising such automation along with incorporating AI and Machine Learning (ML) techniques can track and store the critical know-how of key employees at different levels of an organisation, and retain, improve and share the knowledge with new recruits or the generations to come.
Finally, a reasonable solution would be that instead of streaming process data from the plant edge into the cloud for running inference models, the application (including the trained model) could be shipped to an edge execution environment. Actionable responses and insights could be quickly communicated to the human stakeholders. This mechanism would reduce the high cost in terms of time, network bandwidth, storage capacity, loss of independence, security and privacy caused by centralised cloud storage and computing.
The Intelligent Edge Vision
In the current state of IoT devices, edge computing reflects as intelligently collecting, aggregating and analysing IoT data via cloud services deployed close to IoT devices (i.e., at the edge) based on the business needs of the application. The future of edge computing is complementary to cloud capabilities. The cloud will not be replaced by the edge. The duality of these two paradigms promotes an infrastructure risk distribution between the offshore facility (manufacture) and its data centre. This will provide uninterrupted real-time actionable responses on the edge. The cloud will execute less critical tasks such as model training, retraining, and sustainment as well as monitoring. This hybrid combination will optimise uptimes while minimising the risk of unseen issues.
To achieve the intelligent edge vision, it is necessary to leverage today’s edge computing technology in an optimal and scalable way to deliver high-value intellectual property (IP) in an intelligent edge solution. For example, the Aspen AIoT Hub provides access to data at scale, where in the enterprise, the plant or the edge—providing comprehensive AI pipeline workflows to embed AI in Aspen Models for both engineers and data scientists.
Indeed, change is mission-critical—as Albert Einstein had observed: “If you always do what you always did, you will always get what you always got”.
Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)