Researchers at Japan’s Toshiba Corporation have announced a significant advance in their work to develop an efficient, low cost and highly reliable tandem solar cell that raises the output of solar panels by layering a transparent solar cell over a standard silicon cell.
Building on their achievements to date, the researchers have reported a transparent cuprous oxide (Cu2O) solar cell with a conversion efficiency (PCE) of 9.5%, the highest level yet achieved for a Cu2O cell. This was realised by enlarging its predecessor, announced in December 2021, and points to the potential for mass production. The new cell is expected to provide a boost for the development of EV that do not require plug-in charging, and to advance other mobility applications, such as high-altitude platform stations, telecom platforms in the stratosphere.
Worldwide promotion of renewables as a mainstream energy supply, and of efforts to electrify transportation, is creating opportunities for solar cells. Toshiba is committed to using its technological capabilities to advance carbon neutrality, and as part of this is developing highly efficient and reliable low cost tandem solar cells that can be mounted on vehicles and trains, which offer only limited installation space.
Tandem cells position a solar cell over a standard silicon cell. The cells generate power at different wavelengths, raising areal output, and have great potential to boost the efficiency of solar modules. In addition to Toshiba’s transparent Cu2O cell, work is being done on two other tandem cell technologies: fabrication with gallium arsenide (GaAs) or other III-V materials and perovskite crystal thin films. Production costs for the former range from several hundred to several thousand times the cost of a single silicon cell, severely restricting application. The latter cannot yet deliver the necessary reliability and guaranteed output for the 20-years-and-more life of a silicon cell.
Figure 3. Schematic of Toshiba’s Cu2O-Si tandem solar cell.
Toshiba’s R&D focuses on the advantages of transparent Cu2O cells: fabrication with naturally abundant materials cuts costs; a hard and strong, and moisture-resistant material, all guarantees of reliability (Figure 4); and light transmittance qualities that open the way to high-level power generation efficiency.
Figure 4. Almost no loss in power generation efficiency or transmittance in uncovered Cu2O cells in an indoor laboratory environment for a year demonstrate high reliability.
Toshiba’s painstaking efforts are now bearing fruit. In a research project supported by Japan’s New Energy and Industry Technology Development Organization (NEDO), researchers have pushed the PCE of the Cu2O cell to 9.5%, a full 1.1% over the 8.4% reported last year. It was achieved by enlarging the cell and suppressing carrier recombination in the edge of Cu2O generation layer, which degrades generation efficiency.
“We found that a larger cell size effectively suppresses photocarrier recombination,” explains Kazushige Yamamoto, a Fellow at Toshiba’s Corporate Research & Development Center, and leader of the research team. “Increasing the power generation area from the previous 3x3mm2 to 10x3mm2 produced a relative reduction in recombination in the edge of cell, and the resulting increase in photocurrent pushed the PCE to 9.5%.” (Figure 5)
Figure 5. Movement of optical carriers when cell size is enlarged (viewed from the top)
Toshiba has estimated that positioning the new Cu2O solar cell over a 25% PCE silicone cell realizes a Cu2O-Si tandem cell with a 28.5% PCE—notably surpassing 26.7%, the highest reported PCE for any standard silicon cell and close to 29.1%, the highest reported PCE for any GaAs cell.
Under test criteria defined by NEDO, Toshiba found that a one-time charge enables the current Cu2O-Si tandem cell to power an electric vehicle (EV) for 37km, and further improvements in solar cells toward the theoretical maximum efficiency of 42.3% are expected to extend the range to a distance approaching 55km. These are both recognised as practical distances for short trips without recharging, and would reduce charging frequency for longer trip.
Toshiba targets a practical Cu2O-Si tandem cell with a 10% PCE Cu2O cell and an overall PCE of 30%, and the new cell records solid progress to that goal. Looking to mass production, the company is working to enlarge cell size, and has made a prototype with a power generation area of 40mm2 and a PCE around 8% (Figure 6). The efficiency falloff in the larger cell is due to a less uniform layer and Toshiba continues to refine thin film deposition technology for uniform deposition over a larger area.
Figure 6. Prototype 40mm2 transparent Cu2O solar cell
Toshiba will exhibit this technology advance at CEATEC 2022, a hybrid international tech exhibition that will take place in Japan in October, and also present it at the 33rd International Photovoltaic Science and Engineering Conference (PVSEC-33), at the Nagoya Congress Center in Nagoya, Japan, from the 13th to the 17th of November.
Moving toward practical use in FY2025, Toshiba will cooperate with Toshiba Energy Systems & Solutions Corporation to develop manufacturing technology for tandem cells around the same size as today’s mainstream silicon solar cells. The company will also develop technology for producing 4-terminal Cu2O-Si tandem solar cells suitable for EVs and other mobility devices.
Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)