
Toshiba Corporation has developed a new anomaly detection Artificial Intelligence (AI) that enables large-scale industrial plants to overcome a widespread and growing challenge: using a small workforce to achieve constant and effective monitoring of thousands of sensors and the accurate detection of anomalous signals hidden among small variations in sensor values. The AI can currently be applied to power and industrial plants that use pumps to move fluids and is the first of its kind to realise high-level accuracy in detecting anomalies in the complex interactions between plant operating conditions and massive sensor values. Toshiba will present the technology today, the 7th of December at the 21st IEEE International Conference ICDM2021 LITSA Workshop on Data Mining.
At the core of the AI is Toshiba’s “Two-Stage Auto-Encoder”, a proprietary deep learning model that delivers highly accurate forecasts of sensor values in normal operating conditions. It detects anomaly hidden in massive sensor data by identifying deviations in actual values from the forecast values.
Industrial plants that must move fluids with pumps, such as power plants and water treatment facilities, use sensors to detect values for both small and large fluctuations in operation. Relatively small, rapid fluctuations appear simultaneously on a few sensors as a result of pump vibration or a local temperature change. Large fluctuations that occur on numerous sensors, with a larger amplitude and slower cycle, reflect changes in power and plant operation.
Commenting on the new AI, Susumu Naito, Senior Research Scientist at Toshiba’s Corporate Research & Development Centre, said: “The key factor behind the success of this technology is the deep and extensive know-how Toshiba has gained from many years of experience in the energy and infrastructure business. We applied this to the design of two deep learning models, one for each fluctuation characteristic, and secured very high-level precision in predicting normal sensor values. These are compared with actual values to detect anomalies”.
Tests of the AI on the open datasets of the Water Distribution (WADI) testbed confirmed the highest level of detection accuracy in the industry, a 12% improvement against prior art. In another test, Toshiba also verified that the AI can recognise and report anomalous signs a full 6.8 days earlier than possible with manual monitoring by a trained operator. Early detection of anomalies allows for condition-based maintenance, and contributes to efficient plant operation and maintenance.
Toshiba is carrying out a demonstration experiment of the AI’s online monitoring and early-stage anomaly detection at the Mikawa power plant, operated by SIGMA POWER Ariake Corporation, a subsidiary of Toshiba Energy Systems & Solutions Corporation, in Omuta, Fukuoka, Japan.
Moving forward, Toshiba will ready proof-of-concept (PoC) systems and explore application on other types of industrial plants. Once it is commercialised, Toshiba plans to provide the AI as both an on-premises solution and as a cloud solution in the Toshiba SPINEX Marketplace, Toshiba’s IIoT service portal.


Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)