Toshiba Corporation announced an updated solid-state LiDAR that achieves the world’s smallest volume, robust vibration and wind resistance while maintaining a maximum detection range of 200m, plus the highest resolution of any sensor of similar size. The upgraded performance of the new LiDAR will advance progress to autonomous driving, and also expand its application into monitoring transportation infrastructure, in such areas as early detection of road subsidence or landslides, snow cover, or falls of objects onto roads.
Current monitoring of transportation infrastructure relies on cameras, but their performance is degraded by low light and bad weather. Toshiba’s upgraded solid-state LiDAR is an excellent alternative, as it realises clear, long-distance, robust 3D scanning and object detection in a wide variety of lighting and weather conditions. It is also extremely compact, with an overall volume of 350cc. It is only one-third the size of an earlier prototype announced in July 2020, and the industry’s smallest on record.
“We look forward to deploying our technologies in roadside LiDAR,” said Akihide Sai, Senior Research Scientist at Toshiba’s Corporate Research & Development Center. “We have secured technologies essential for a compact, high-resolution, long-range solid-state LiDAR that is robust and simple to install. We anticipate demand for such a versatile technology in both the autonomous driving and transportation infrastructure monitoring markets.”
Toshiba achieved a compact LiDAR with higher image resolution through upgrades to its silicon photo-multiplier (SiPM), a light-receiving chip. An SiPM consists of light-receiving cells controlled by transistors. The new chip has a smaller transistor module, and eliminates the buffer layer that protected the transistors with newly developed insulating trenches between the transistors and the light-receiving cells. The potential issue of low light-sensitivity from using smaller transistors was solved with the addition of a high-withstand voltage section to raise the voltage input to the light-receiving cell (Figure 1).
These innovations have reduced the size of the SiPM by 75% while enhancing its light sensitivity by 50% against the July 2020 predecessor. More SiPM can now be arrayed in the same package, boosting resolution to 1,200 x 80 pixels, a 4-times improvement.
Figure 1: Toshiba’s new SiPM is implemented with smaller transistors, a high voltage input section, and insulating trenches.
Toshiba has also ensured that the new LiDAR unit has the durability essential for outdoor use in all weather conditions. Temperature compensation technology that automatically adjusts voltage input to the light-receiving cells reduces impacts from external temperature changes and maintains high level SiPM performance. In addition, by utilising its know-how in high-density component mounting, Toshiba has reduced the overall size of the LiDAR projector and receiver to 350cc (Figure 2), and secured robust vibration and wind resistance. These advantages, plus world-beating high resolution, are expected to win wider application of the system.
Figure 2: (Left) Toshiba utilised high-density mounting know-how to build the LiDAR unit. (Right) Toshiba’s LiDAR prototype is the world’s smallest, 350cc in volume.
Toshiba will continue to support safer transportation by promoting its LiDAR technologies for autonomous driving and transportation infrastructure monitoring. Continued R&D will further advance the LiDAR’s detection range, image resolution and miniaturisation, and explore new applications in robots, drones, and small security devices.
Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)