UiPath, a leading enterprise automation software company, has announced data science teams using Amazon SageMaker, an end-to-end Machine Learning (ML) service, can now connect to UiPath. Doing so allows them to quickly and seamlessly connect new ML models into business processes without the need for complex coding and manual effort.
The UiPath Business Automation Platform makes it simple for data scientists, ML engineers and business analysts to automate deployment pipelines. This reduces the cost of experimentation and increases the pace of innovation.
Amazon SageMaker is a fully managed service from Amazon Web Services (AWS) to prepare data and build, train and deploy ML models for any use case with fully managed infrastructure, tools and workflows. By connecting Amazon SageMaker to UiPath, users can:
- Rapidly deploy new ML models into production. Connect newly completed ML models into production workflows in minutes, minimising the time to value for business users. Integrate Amazon SageMaker ML models into automation workflows without code. Use UiPath robots to drive workflows and manage end-to-end business processes.
- Optimise the productivity of data science teams. Facilitate consistent and accurate workflows that reduce the need for human involvement and free up critical resources for strategic work. With UiPath automation, organisations can greatly lessen the burden on data science teams to deploy the latest ML models to end-users. Teams can also improve reliability by decreasing human error while maintaining human oversight to meet governance and compliance standards.
- Increase the speed of ML innovation. Enable engineering teams to test their ideas, tackle new challenges and experiment more frequently with their data. Automation removes the manual effort to code, troubleshoot and maintain scripts across the breadth of the ML data pipeline and improves the speed and reliability of new model deployment into business processes.
“Tens of thousands of active customers use Amazon SageMaker to train models with billions of parameters and make trillions of predictions per month,” said Ankur Mehrotra, General Manager, Amazon SageMaker, at AWS. “With the integration with UiPath, our goal is to help customers accelerate the deployment of their ML models cost efficiently and with optimised infrastructure.”
“UiPath’s Amazon SageMaker connector is designed to solve a key pain point by allowing our customers to realise business value from their ML models faster. Data science teams can quickly embed ML models into actual business processes and reduce effort and the time to market,” said Sai Shankar, a Managing Director at Slalom, a purpose-led, global business and technology consulting company. “Working in cooperation with AWS and UiPath helps us deliver AI and ML enabled business process automations for our customers. Our data science and intelligent automation teams are eager to leverage the connector to help our customers operationalize ML models faster and leverage them at scale.”
“Data scientists and data science team leaders are working at the cutting edge, creating powerful new ML models to accelerate business performance. At the same time, these professionals are saddled with time-consuming, manual management, which slows progress and adds costs,” said Graham Sheldon, Chief Product Officer at UiPath. “By connecting Amazon SageMaker to the UiPath platform, we are helping reduce this complexity with automation. This opens avenues for faster deployment, lower costs, and more opportunities for innovation through ML.”
To learn more about taking on new use cases by incorporating AI and ML models into automations, visit the UiPath AI Center.
Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)