
When someone says “You’re being profiled”, it either means you’re at a job interview or your job is spying.
That has changed over recent years. Now being profiled has become part of our everyday lives. Being profiled could mean a trip to the store for groceries. It could mean about what movies you watch. It could mean about what food you eat. Which would entail all your movements, all your preferences, your purchase decisions and such will be collected, tabulated, analysed and used to create the convenience you would expect.
Of course this type of intrusion is an acceptable evil for a better lifestyle, but still an intrusion nonetheless. After all, what does buying something from the store have anything to do with where I live, or my hand-phone number, or what my race is.
But have we missed something in all our bustle to get on with life and is there a price to pay for this intrusion on privacy?
You may argue that profiling in the modern age is a normality and does help with narrowing down the search canvas. Buying a second hand car or home or even looking for a partner, using a search engine makes the medicine go down easier. The more information entered, the more precise results you would hope to reap.
The emergence of Big Data analytics is the catalyst responsible for changing the game somewhat. By ‘somewhat’ I mean drastically. The data from all the profiling is enormous and constant. Without Big Data tools, there would simply be no harnessing it.
So Big Data tools for analysing and profiling can solve as simple a problem as which word you prefer to use while texting, to as convoluted as predictions on disease and crime.
Big Data algorithms were deployed at the Chicago Police Department to look for heat areas or areas prone to crime. A ‘hit list’ of individuals with a “higher chance of committing a crime” is also generated by algorithms based on profiling.
These predictive profiling based on algorithms created by Miles Wernick, professor of electrical engineering at the Illinois Institute of Technology, was quoted as saying that he believes it does not have any racial, neighbourhood, or other such connotations and will be unbiased and quantitative.
Although Wernick’s claim can be accepted on some level, does it indemnify the algorithm from making mistakes? From creating a profile pattern it recognizes to be true and therefore sending its own calculated predictions to authorities. Since its calculations are made from entries, the entries too need to be flawless. That itself has its own pitfalls and faults.
So now it comes down to the ethical views where there is much to be understood as to what algorithms will tolerate and what will falter. There have been a number of such experiments done on algorithms through machine learning, and the results have been less than impressive. The argument in its defense is that an algorithm isn’t biased because its quantitative.
The technology to predict disease, crime or natural catastrophes is in our midst. The technology to eradicate famine and bring peace in our time has quite possibly arrived. When will it be used as such might take a while. So before the machine learns the importance and rules of ethics though, it would be good if humans do so first. That, might take a bit longer.


Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)