
WiMi Hologram Cloud Inc., a leading global hologram augmented reality (AR) technology provider, has announced a new and more efficient solution for computer-generated holography (CGH) through deep learning and neural network technology.
Deep learning can find the optimal or local optimal solution in operation, making it efficient to compute CGH, which can be applied to holographic light traps, 3D displays, planar concentrators, AR displays, etc.
CGH technology can obtain the best wave modulation by inverse-solving the custom light field. Image quality is limited by the accuracy of SLM modulation, which is usually challenging to represent the target light field. In practice, the solution of computational holograms is always approximate and numerical methods are needed to determine feasible holograms to obtain the best-encoded wavefront.
Moving Beyond Iterative Algorithms
The current computation in CGH usually uses iterative algorithms, and non-iterative methods are designed to save computation time by evolving the GS algorithm. Despite the improvement, these non-iterative methods always lead to poor image quality and low spatial resolution during reconstruction due to scatter noise, downsampling effects, and conjugate image interference.
In using deep learning technologies, U-net structures have been tried on CGH problems with initial success, but the holograms obtained by U-net in computational holographic problems have the drawback of degrading the quality of reconstructed images.
Traditional convolutional neural networks rely on convolutional filters and nonlinear activation functions, which means that the processed data are assumed to be linearly separable. However, problems such as image coding, holographic encryption, and frequency analysis are difficult to describe by linearly divisible functions, and simple convolution and deconvolution are always restricted to a certain region to improve operational efficiency. The inability of U-net to utilise and rewrite global information means that optical image processing is very weak.
Efficient Computer-Generated Holography
WiMi has developed efficient computer-generated holography (ECGH) technology, a deep learning-based CGH imaging method, which aims to solve the problems of long computational cycles and poor quality of traditional CGH methods. The method uses a mixed linear convolutional neural network (MLCNN) for computational holographic imaging and enhances information mining and information exchange by introducing a fully connected layer in the network.
The network uses an MLCNN structure with line fork layers, a “DownSample” structure for down-sampling and an “UpSample” structure for up-sampling. The technology uses a neural network model to calculate the input target optical field and computes the phase values to simulate the optical experimental results. The target optical field is compared with the simulation results using a loss function, and the gradient of the loss value is calculated and back-propagated to update the network parameters.
Generating High-Quality Holographic Imaging
WiMi’s ECGH method can quickly obtain the required pure-phase images to generate high-quality holographic imaging. Compared with the traditional deep learning-based CGH method, WiMi’s ECGH technology can reduce the number of parameters required for network training by about 60%, thus improving the efficiency and reliability of the network. In addition, the network structure of ECGH technology is highly versatile and can be used to solve various image reconstruction problems, which has strong practicality and application prospects.
WiMi’s ECGH images use a non-iterative deep learning model MLCNN, which can compute hologram generation faster. By successfully applying the ECGH method, high-quality and stable computational hologram images can be obtained.
A major feature of the MLCNN structure is the ability to compute cross-region exchange of data, which makes it suitable for complex optical functions that require the manipulation of global information. Applying the MLCNN model in WiMi’s ECGH technology can effectively handle the complexity of optical functions. The model can handle a variety of complex optical functions to generate high-quality holographic images.
Ushering in Realistic Visual Experiences
This holographic image can perfectly reproduce the 3D scene, giving the observer a more realistic visual experience. The MLCNN model has better optical domain adaptation than the U-net network structure. This gives it an advantage in holographic generation and reconstruction because it can better handle the complexity of optical functions and variations in the optical domain, and CGH can perfectly reproduce the ability of 3D scenes and prevent visual fatigue.
The ECGH technology developed based on the MLCNN model framework of deep learning and neural networks not only reduces the computational load but also improves the quality of holograms, thus making CGH more practical. In addition, the MLCNN model is highly flexible and can be adapted to different holographic generation tasks. It has excellent computational power and high-quality hologram generation capability.
With the continuous development of technology, the ECGH technology of the MLCNN model will be more widely used.


Archive
- October 2024(44)
- September 2024(94)
- August 2024(100)
- July 2024(99)
- June 2024(126)
- May 2024(155)
- April 2024(123)
- March 2024(112)
- February 2024(109)
- January 2024(95)
- December 2023(56)
- November 2023(86)
- October 2023(97)
- September 2023(89)
- August 2023(101)
- July 2023(104)
- June 2023(113)
- May 2023(103)
- April 2023(93)
- March 2023(129)
- February 2023(77)
- January 2023(91)
- December 2022(90)
- November 2022(125)
- October 2022(117)
- September 2022(137)
- August 2022(119)
- July 2022(99)
- June 2022(128)
- May 2022(112)
- April 2022(108)
- March 2022(121)
- February 2022(93)
- January 2022(110)
- December 2021(92)
- November 2021(107)
- October 2021(101)
- September 2021(81)
- August 2021(74)
- July 2021(78)
- June 2021(92)
- May 2021(67)
- April 2021(79)
- March 2021(79)
- February 2021(58)
- January 2021(55)
- December 2020(56)
- November 2020(59)
- October 2020(78)
- September 2020(72)
- August 2020(64)
- July 2020(71)
- June 2020(74)
- May 2020(50)
- April 2020(71)
- March 2020(71)
- February 2020(58)
- January 2020(62)
- December 2019(57)
- November 2019(64)
- October 2019(25)
- September 2019(24)
- August 2019(14)
- July 2019(23)
- June 2019(54)
- May 2019(82)
- April 2019(76)
- March 2019(71)
- February 2019(67)
- January 2019(75)
- December 2018(44)
- November 2018(47)
- October 2018(74)
- September 2018(54)
- August 2018(61)
- July 2018(72)
- June 2018(62)
- May 2018(62)
- April 2018(73)
- March 2018(76)
- February 2018(8)
- January 2018(7)
- December 2017(6)
- November 2017(8)
- October 2017(3)
- September 2017(4)
- August 2017(4)
- July 2017(2)
- June 2017(5)
- May 2017(6)
- April 2017(11)
- March 2017(8)
- February 2017(16)
- January 2017(10)
- December 2016(12)
- November 2016(20)
- October 2016(7)
- September 2016(102)
- August 2016(168)
- July 2016(141)
- June 2016(149)
- May 2016(117)
- April 2016(59)
- March 2016(85)
- February 2016(153)
- December 2015(150)